我觉得这个“刀”还是要注明一下:因为我们知道对于一维空间,我们是用点去切,而二维空间,我们是用直线去切;在三维空间,我们是用面去切;所以到了四维空间我们就要拿一个立方体去切了;然后到了五维空间就要拿一个超立方体去切了,是不是感觉很好玩~那就玩玩看吧……
我们记 f(n,m) 为n 维空间被m个m-1维的"刀"切最多被切出的“块数”.
① 显然 f(n,0)=1
② 这个比较显然在一维空间,很简单,一条直线被个点切成了段,所以f(1,m)=m+1.
③ 在二维空间,等于是把一个平面用直线去切咯,我们可以看一下f(2,m) 和f(2,m-1) 的关系,可以这样子想,我们先用条直线切好,然后再用第m条直线去切,让这条直线与其他的条直线都有交点,就会多出m块,也就是f(1,m-1)=m,所以呢,我们有:f(2,m)=f(2,m-1)+f(1,m-1)
这个用高中数列的累加法就可以算出来了~解出
f(2,m)=(m^2+m+2)/2
④ 在三维空间,同样的我们用一个平面去切一个三维的空间,这是继续找f(3,m) 和f(3,m-1) 的关系吧,继续类比二维的思路,先用(m-1)个平面切好,然后再用第m个平面去切,让这条平面与其他的(m-1)个平面都有交点,就会多出f(2,m-1) 块,所以呢,我们有:f(3,m)=f(3,m-1)+f(2,m-1)
这个计算用高中的数列知识依然可以算出来~解出 f(3,m)(m^3+5*m+6)/6
⑤ 拓展都神奇的n维空间 f(n,m)=f(n,m-1)+f(n-2,m-1)