题目链接
解题报告:
1.
1.
1.由数据范围可知需离散化
2.
2.
2.直接上线段树维护最值即可。
对于最值下标的查询 根据查询规则确定左右子树的访问顺序。
代码展示:
#include<bits/stdc++.h>
#define LL long long
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=2e5+5;
const int MOD=1e4+7;
inline int read() {
int s = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {f = -1;ch = getchar();}
while (ch >= '0' && ch <= '9') {s = (s << 1) + (s << 3) + ch - '0';ch = getchar();}
return s * f;
}
inline void write(int x) {
if (x < 0) x = -x, putchar('-');
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
struct node{
int l,r,max,min;
}seg[maxn<<2];
vector<int>g;
int a[maxn],b[maxn],c[maxn];
void pushup(int rt){
seg[rt].max=max(seg[rt<<1].max,seg[rt<<1|1].max);
seg[rt].min=min(seg[rt<<1].min,seg[rt<<1|1].min);
}
void build(int l,int r,int rt){
seg[rt].l=l;seg[rt].r=r;
if(l==r){
seg[rt].max=seg[rt].min=b[l];return;
}
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
pushup(rt);
}
void modify(int pos,int rt,int k){
if(seg[rt].l==seg[rt].r){
seg[rt].max=seg[rt].min=k;return ;
}
int mid=(seg[rt].l+seg[rt].r)>>1;
if(pos<=mid) modify(pos,rt<<1,k);
else modify(pos,rt<<1|1,k);
pushup(rt);
}
int getmax(int L,int R,int rt){
if(L<=seg[rt].l&&R>=seg[rt].r) return seg[rt].max;
int mid=(seg[rt].l+seg[rt].r)>>1,ans=INT_MIN;
if(L<=mid) ans=max(ans,getmax(L,R,rt<<1));
if(R>mid) ans=max(ans,getmax(L,R,rt<<1|1));
return ans;
}
int getmin(int L,int R,int rt){
if(L<=seg[rt].l&&R>=seg[rt].r) return seg[rt].min;
int mid=(seg[rt].l+seg[rt].r)>>1,ans=INT_MAX;
if(L<=mid) ans=min(ans,getmin(L,R,rt<<1));
if(R>mid) ans=min(ans,getmin(L,R,rt<<1|1));
return ans;
}
int querymax(int L,int R,int rt,int k){
if(seg[rt].l==seg[rt].r) return seg[rt].l;
int mid=(seg[rt].l+seg[rt].r)>>1;
if(L>mid) return querymax(L,R,rt<<1|1,k);
else if(R<=mid) return querymax(L,R,rt<<1,k);
else{
if(getmax(mid+1,min(R,seg[rt].r),1)>k) return querymax(L,R,rt<<1|1,k);
else return querymax(L,R,rt<<1,k);
}
}
int querymin(int L,int R,int rt,int k){
if(seg[rt].l==seg[rt].r) return seg[rt].l;
int mid=(seg[rt].l+seg[rt].r)>>1;
if(L>mid) return querymin(L,R,rt<<1|1,k);
else if(R<=mid) return querymin(L,R,rt<<1,k);
else{
if(getmin(max(L,seg[rt].l),mid,1)==k) return querymin(L,R,rt<<1,k);
else return querymin(L,R,rt<<1|1,k);
}
}
int main() {
int n=read();
for(int i=1;i<=n;i++){
a[i]=read();
g.push_back(a[i]);
c[i]=read();
}
sort(all(g));
for(int i=1;i<=n;i++){
a[i]=lower_bound(all(g),a[i])-g.begin()+1;
b[a[i]]=c[i];
}
build(1,n,1);
for(int i=1;i<=n;i++){
if(a[i]!=1&&getmax(1,a[i]-1,1)>b[a[i]]){
int pos=querymax(1,a[i]-1,1,b[a[i]]);
modify(pos,1,b[a[i]]);
b[pos]=b[a[i]];
}
if(a[i]!=n&&getmax(a[i]+1,n,1)<=b[a[i]]){
int val=getmin(a[i]+1,n,1);
int pos=querymin(a[i]+1,n,1,val);
modify(pos,1,b[a[i]]);
b[pos]=b[a[i]];
}
}
for(int i=1;i<=n;i++) printf("%d%c",b[a[i]],i==n?'\n':' ');
return 0;
}