牛客小白月赛28 E( 线段树—区间最值下标)

题目链接
在这里插入图片描述
解题报告:
1. 1. 1.由数据范围可知需离散化
2. 2. 2.直接上线段树维护最值即可。
对于最值下标的查询 根据查询规则确定左右子树的访问顺序。
代码展示:

#include<bits/stdc++.h>
#define LL long long
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=2e5+5;
const int MOD=1e4+7;

inline int read() {
    int s = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {f = -1;ch = getchar();}
    while (ch >= '0' && ch <= '9') {s = (s << 1) + (s << 3) + ch - '0';ch = getchar();}
    return s * f;
}
inline void write(int x) {
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10);
    putchar(x % 10 + '0');
}

struct node{
    int l,r,max,min;
}seg[maxn<<2];

vector<int>g;
int a[maxn],b[maxn],c[maxn];
void pushup(int rt){
    seg[rt].max=max(seg[rt<<1].max,seg[rt<<1|1].max);
    seg[rt].min=min(seg[rt<<1].min,seg[rt<<1|1].min);
}
void build(int l,int r,int rt){
    seg[rt].l=l;seg[rt].r=r;
    if(l==r){
        seg[rt].max=seg[rt].min=b[l];return;
    }
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    pushup(rt);
}
void modify(int pos,int rt,int k){
    if(seg[rt].l==seg[rt].r){
        seg[rt].max=seg[rt].min=k;return ;
    }
    int mid=(seg[rt].l+seg[rt].r)>>1;
    if(pos<=mid) modify(pos,rt<<1,k);
    else modify(pos,rt<<1|1,k);
    pushup(rt);
}
int getmax(int L,int R,int rt){
    if(L<=seg[rt].l&&R>=seg[rt].r) return seg[rt].max;
    int mid=(seg[rt].l+seg[rt].r)>>1,ans=INT_MIN;
    if(L<=mid) ans=max(ans,getmax(L,R,rt<<1));
    if(R>mid) ans=max(ans,getmax(L,R,rt<<1|1));
    return ans;
}
int getmin(int L,int R,int rt){
    if(L<=seg[rt].l&&R>=seg[rt].r) return seg[rt].min;
    int mid=(seg[rt].l+seg[rt].r)>>1,ans=INT_MAX;
    if(L<=mid) ans=min(ans,getmin(L,R,rt<<1));
    if(R>mid) ans=min(ans,getmin(L,R,rt<<1|1));
    return ans;
}
int querymax(int L,int R,int rt,int k){
    if(seg[rt].l==seg[rt].r) return seg[rt].l;
    int mid=(seg[rt].l+seg[rt].r)>>1;
    if(L>mid) return querymax(L,R,rt<<1|1,k);
    else if(R<=mid) return querymax(L,R,rt<<1,k);
    else{
        if(getmax(mid+1,min(R,seg[rt].r),1)>k) return querymax(L,R,rt<<1|1,k);
        else return querymax(L,R,rt<<1,k);
    }
}
int querymin(int L,int R,int rt,int k){
    if(seg[rt].l==seg[rt].r) return seg[rt].l;
    int mid=(seg[rt].l+seg[rt].r)>>1;
    if(L>mid) return querymin(L,R,rt<<1|1,k);
    else if(R<=mid) return querymin(L,R,rt<<1,k);
    else{
        if(getmin(max(L,seg[rt].l),mid,1)==k) return querymin(L,R,rt<<1,k);
        else return querymin(L,R,rt<<1|1,k);
    }
}
int main() {
    int n=read();
    for(int i=1;i<=n;i++){
        a[i]=read();
        g.push_back(a[i]);
        c[i]=read();
    }
    sort(all(g));
    for(int i=1;i<=n;i++){
        a[i]=lower_bound(all(g),a[i])-g.begin()+1;
        b[a[i]]=c[i];
    }
    build(1,n,1);
    for(int i=1;i<=n;i++){
        if(a[i]!=1&&getmax(1,a[i]-1,1)>b[a[i]]){
            int pos=querymax(1,a[i]-1,1,b[a[i]]);
            modify(pos,1,b[a[i]]);
            b[pos]=b[a[i]];
        }
        if(a[i]!=n&&getmax(a[i]+1,n,1)<=b[a[i]]){
            int val=getmin(a[i]+1,n,1);
            int pos=querymin(a[i]+1,n,1,val);
            modify(pos,1,b[a[i]]);
            b[pos]=b[a[i]];
        }
    }
    for(int i=1;i<=n;i++) printf("%d%c",b[a[i]],i==n?'\n':' ');
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值