2022级专题三图论课后练习I - 单源最短路

该文介绍了一个使用SPFA(ShortestPathFasterAlgorithm)算法解决无向图中从源点s到目标点t的最短路径问题。给定节点数n、边数m以及起点s和终点t,通过构建邻接列表并进行队列优化的广度优先搜索,找到最短路径。在C++代码示例中,展示了如何实现这一算法并输出最短路径长度。
摘要由CSDN通过智能技术生成

题目描述:

给一个n(1≤n≤2500)个点m(1≤m≤6200)条边的无向图,求st的最短路。

输入格式

第一行四个由空格隔开的整数 nmst
之后的m行,每行三个正整数sitiwi(1≤wi≤10^9),表示一条从siti长度为wi的边。

输出格式:

一个整数表示从st的最短路长度。数据保证至少存在一条道路。

输入输出样例

输入 #1

7 11 5 4

2 4 2

1 4 3

7 2 2

3 4 3

5 7 5

7 3 3

6 1 1

6 3 4

2 4 3

5 6 3

7 2 1

输出 #1

7

思路:

最短路问题,路都是双向,可用spfa或者kurskal算法去解决,下面提供一个用spfa的代码。

代码:

#include <bits/stdc++.h>
#define Pa pair< long long, int >
#define fi first
#define se second
using namespace std;
const int MaxN = 1e5 + 1; 
const long long inf =  1e17 + 7;
vector< Pa > graph[ MaxN ];
bool vis[ MaxN ]; 
int cnt[ MaxN ];
long long dis[ MaxN ]; 
queue< int > que;

bool spfa( int N, int M, int S ) {
	int i, j, k;
	int p;
	for ( i = 1; i <= N; i ++ ) {
		dis[ i ] = inf;
		cnt[ i ] = 0;
		vis[ i ] = false;
	}
	dis[ S ] = 0, vis[ S ] = true, que.push( S );
	while ( !que.empty( ) ) {
		p = que.front( ), que.pop( ), vis[ p ] = false;
		int siz = graph[ p ].size( );
		for ( i = 0; i < siz; i ++ ) {
			int to = graph[ p ][ i ].fi, va = graph[ p ][ i ].se;
			if ( dis[ to ] > dis[ p ] + va ) {
				dis[ to ] = dis[ p ] + graph[ p ][ i ].se;
				cnt[ to ] = cnt[ p ] + 1;
				if ( cnt[ to ] >= N ) {
					return true;
				}
				if ( !vis[ to ] ) {
					que.push( to );
					vis[ to ] = true;
				}
			}
		}
	}
	return false;
}

int main( ) {
	int i, j, k;
	int N, M, S, T; 
	int from, to, value;
	Pa temp;
	scanf("%d%d%d%d", &N, &M, &S, &T);
	for ( i = 1; i <= M; i ++ ) {
		scanf("%d %d %d", &from, &to, &value );
		temp.se = value;
		temp.fi = to;
		graph[ from ].push_back( temp );  
		temp.fi = from;
		graph[ to ].push_back( temp );
	}
	spfa( N, M, S );
	cout<<dis[T];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值