参考链接:点击打开链接
概述与分析
STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation。首先我们必须了解什么是“下一个”排列组合,什么是“前一个”排列组合。考虑三个字符所组成的序列{a,b,c}。
这个序列有六个可能的排列组合:abc,acb,bac,bca,cab,cba。这些排列组合根据less-than操作符做字典顺序(lexicographical)的排序。也就是说,abc名列第一,因为每一个元素都小于其后的元素。acb是次一个排列组合,因为它是固定了a(序列内最小元素)之后所做的新组合。
同样道理,那些固定b(序列中次小元素)而做的排列组合,在次序上将先于那些固定c而做的排列组合。以bac和bca为例,bac在bca之前,因为次序ac小于序列ca。面对bca,我们可以说其前一个排列组合是bac,而其后一个排列组合是cab。序列abc没有“前一个”排列组合,cba没有“后一个”排列组合。
next_permutation()会取得[first,last)所标示之序列的下一个排列组合,如果没有下一个排列组合,便返回false;否则返回true。这个算法有两个版本。其中常用的版本使用元素型别所提供的less-than操作符来决定下一个排列组合。
使用例子
1、输出序列{1,2,3,4}字典序的全排列。
#include <iostream>
#include<algorithm>
using namespace std;
int main(int argc, char** argv) {
int a[4]={1,2,3,4};
sort(a,a+4);
do{
//cout<<a[0]<<" "<<a[1]<<" "<<a[2]<<" "<<a[3]<<endl;
for(int i=0;i<4;i++)
cout<<a[i]<<" ";
cout<<endl;
}while(next_permutation(a,a+4));
return 0;
}
2、输入任意一个字符串,输出其字典序的全排列
#include <iostream>
#include<algorithm>
using namespace std;
int main(int argc, char** argv) {
string str;
cin>>str;
sort(str.begin(),str.end());
do{
cout<<str<<endl;
}while(next_permutation(str.begin(),str.end()));
return 0;
}

3、能否直接算出集合{1, 2, ..., m}的第n个排列?
举例说明:如7个数的集合为{1, 2, 3, 4, 5, 6, 7},要求出第n=1654个排列。
#include <iostream>
#include<algorithm>
using namespace std;
int main(int argc, char** argv) {
int a[7]={1,2,3,4,5,6,7};
sort(a,a+7);
int n=0;
do{
if(n==1654){
for(int i=0;i<7;i++)
cout<<a[i];
cout<<endl;
break;
}
n++;
}while(next_permutation(a,a+7));
return 0;
}
