[Deeplearning]对比散度算法(CD算法)

本篇博文是对基于能量的模型和波尔兹曼机关于对比散度算法的总结。

对比散度算法(Contrastive Divergence)

尽管利用Gibbs采样,我们可以得到对数似然函数关于未知参数梯度的近似,但是通常情况下,需要使用较大的采样步数,这使得RBM的训练效率仍然不高,尤其当观测数据的特征维数较高时。2002年Hinton提出了RBM的一个快速学习算法,对比散度算法(Contrastive Divergence)。与Gibbs采样不同,Hinton指出,当使用训练数据初始化 v0 时,我们仅需要使用 k (通常k1)步Gibbs采样就可以得到足够好的近似。在CD算法一开始,可见单元的状态被设置成一个训练样本,并利用以下公式计算隐藏层单元的二值状态,在所有隐藏单元状态确定了之后,根据下面公式2来确定每个可见单元取值为1的概率。进而得到可见层的一个重构。然后将重构的可见层作为真实的模型带入RBM的 Δ 中,就可以进行梯度下降算法了。
p(hi=1|v)=sigmoid(ci+Wiv)
p(vj=1|h)=sigmoid(bj+Wjh)

RBM基于CD的快速学习算法主要步骤如下

#输入:一个训练样本x0;隐藏层单元个数m,学习速率alpha,最大训练周期T
#输出:链接权重矩阵W,可见层的偏置向量a,隐藏层的偏置向量b
#训练阶段:初始化可见层单元的状态为v1 = x0;W,a,b为随机的较小的数值
for t = 1:T
    for j = 1:m #对所有隐藏单元
        P(h1j=1|v1)=sigmoid(bj + sum_i(v1i * Wij));
    for i = 1:n#对于所有可见单元
        p(v2i=1|h1)=sigmoid(ai + sum_j(Wij * h1j)
    for j = 1:m #对所有隐藏单元
        P(h2j=1|v2)=sigmoid(bj+sum_j(v2i*Wij))
    W = W + alpha * (P(h1=1|v1)*v1 - P(h2=1|v2)*v2)
    a = a + alpha * (v1 - v2)
    b = b + alpha*(P(h1=1|v1) - P(h2=1|v2))
  • 7
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
对比散度(Contrastive Divergence,CD算法是一种用于训练受限玻尔兹曼机(RBM)的近似梯度下降算法。它通过比较两个分布之间的差异来近似计算梯度,从而更新RBM的参数。 下面是对比散度算法的详细步骤: 1. 初始化:首先,我们需要初始化RBM的可见层和隐藏层的状态。这可以通过从训练数据中抽样得到初始状态。 2. 正向传播:通过正向传播计算可见层和隐藏层之间的联合概率。可见层和隐藏层之间的联合概率可以使用RBM的能量函数和激活函数来计算。 3. 反向传播:接下来,我们使用反向传播来计算可见层和隐藏层之间的负样本联合概率。在反向传播中,我们根据当前的可见层状态和RBM的权重参数来生成隐藏层状态,并根据生成的隐藏层状态再次生成可见层状态。这个过程可以通过Gibbs采样来实现。 4. 参数更新:通过比较正样本联合概率和负样本联合概率之间的差异,我们可以估计出对数似然函数的梯度。根据梯度信息,我们可以更新RBM的权重参数,使得模型能够更好地拟合训练数据。 5. 重复迭代:重复执行步骤2至步骤4,直到达到收敛或满足停止准则为止。在每一次迭代中,我们都会生成新的样本,并使用生成的样本来更新RBM的参数。 值得注意的是,对比散度算法是一种近似方法,它并不能保证找到全局最优解。然而,在实践中,对比散度算法已经被证明是有效的,并且在训练RBM和其他概率生成模型中得到广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值