第48天-TensorFlow训练模型输出到web检测

一、项目设计

  1. 前端使用Flask web框架上传图片,通过模型分析输出结果

  2. 后端使用TensorFlow通过data文件夹图片训练模型

二、TensorFlow创建模型方法

import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# 数据路径
data_dir = "data"
img_size = (150, 150)
batch_size = 32  # 增加批次大小

# 数据增强
datagen = ImageDataGenerator(
    rescale=1.0 / 255,
    rotation_range=20,  # 随机旋转
    width_shift_range=0.2,  #
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

速易达网络

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值