题意:给出n个线段,m个查询,每个查询给出一个点集,求被点集中的点覆盖的线段的个数。
思路:将问题转化成求没有被任意一个点覆盖的线段的个数x,这样答案就是n - x。对于一个点集,那么就变成了,查询完全在相邻的两个点之间的线段个数,这样问题就变成了查询区间内的线段个数,将线段和查询放在一起排序,先按l大的排,然后是r小的优先,最后线段优先。那么每次遇到线段,将它的右端点插入树状数组,遇到查询,此时插入树状数组的线段左端点一定大于等于查询的左端点,因此求查询右端点的前缀和即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<cmath>
#include<vector>
#define inf 0x3f3f3f3f
#define Inf 0x3FFFFFFFFFFFFFFFLL
#define eps 1e-8
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int maxn = 1000000 + 10;
struct Node
{
int l,r,id;
bool operator < (const Node & a) const
{
if(l != a.l) return l > a.l;
if(r != a.r) return r < a.r;
return id < a.id;
}
}node[maxn];
int C[maxn],ans[maxn];
void add(int x)
{
for(;x < maxn;x += x&-x)
C[x]++;
}
int sum(int x)
{
int res = 0;
for(; x > 0; x -= x&-x)
res += C[x];
return res;
}
int main()
{
// freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m,tot = 0;
scanf("%d%d",&n,&m);
for(int i = 0;i < n;++i)
{
scanf("%d%d",&node[tot].l,&node[tot].r);
node[tot++].id = 0;
}
int cnt,p,last = 0;
for(int i = 1;i <= m;++i)
{
scanf("%d",&cnt);
ans[i] = n;
last = 0;
for(int j = 0; j < cnt;++j)
{
scanf("%d",&p);
node[tot].l = last+1;
node[tot].r = p - 1;
if(node[tot].l <= node[tot].r)
node[tot++].id = i;
last = p;
}
node[tot].l = last + 1;
node[tot].r = 1e6 + 1;
node[tot++].id = i;
}
sort(node,node + tot);
for(int i = 0;i < tot;++i)
if(node[i].id)
ans[node[i].id] -= sum(node[i].r);
else
add(node[i].r);
for(int i = 1;i <= m;++i)
printf("%d\n",ans[i]);
return 0;
}