简单易懂的softmax交叉熵损失函数求导

来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~
softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。

softmax 函数

softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任务的输出层。其实可以认为softmax输出的是几个类别选择的概率,比如我有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。

softmax函数的公式是这种形式:
S i = e z i ∑ k e z k S_i = \frac{e^{z_i}}{\sum_k{e^{z_k}}} Si=kezkezi
S i S_i Si代表的是第i个神经元的输出。
ok,其实就是在输出后面套一个这个函数,在推导之前,我们统一一下网络中的各个表示符号,避免后面突然出现一个什么符号懵逼推导不下去了。
首先是神经元的输出,一个神经元如下图:

神经元的输出设为:
z i = ∑ j w i j x i j + b z_i = \sum_j{w_{ij} x_{ij} + b} zi=jwijxij+b
其中 w i j w_{ij} wij是第 i i i个神经元的第 j j j个权重, b b b是偏移值。 z i z_i zi表示该网络的第 i i i个输出。
给这个输出加上一个softmax函数,那就变成了这样:
a i = e z i ∑ k e z k a_i = \frac{e^{z_i}}{\sum_k{e^{z_k}}} ai=kezkezi
a i a_i ai代表softmax的第i个输出值,右侧就是套用了softmax函数。

损失函数 loss function

在神经网络反向传播中,要求一个损失函数,这个损失函数其实表示的是真实值与网络的估计值的误差,知道误差了,才能知道怎样去修改网络中的权重。

损失函数可以有很多形式,这里用的是交叉熵函数,主要是由于这个求导结果比较简单,易于计算,并且交叉熵解决某些损失函数学习缓慢的问题。交叉熵的函数是这样的:
C = − ∑ i y i ln ⁡ a i C = -\sum_i{y_i \ln {a_i}} C=iyilnai
其中 y i y_i yi表示真实的分类结果。
到这里可能嵌套了好几层,不过不要担心,下面会一步步推导,强烈推荐在纸上写一写,有时候光看看着看着就迷糊了,自己边看边推导更有利于理解~

最后的准备

在我最开始看softmax推导的时候,有时候看到一半不知道是怎么推出来的,其实主要是因为一些求导法则忘记了,唉~
所以这里把基础的求导法则和公式贴出来~有些忘记的朋友可以先大概看一下:

推导过程

好了,这下正式开始~
首先,我们要明确一下我们要求什么,我们要求的是我们的loss对于神经元输出( z i z_i zi)的梯度,即:
∂ C ∂ z i \frac{\partial C}{\partial z_i} ziC
根据复合函数求导法则:
∂ C ∂ z i = ∑ j ( ∂ C j ∂ a j ∂ a j ∂ z i ) \frac{\partial C}{\partial z_i} = \sum_j{( \frac{\partial C_j}{\partial a_j} \frac{\partial a_j}{\partial z_i})} ziC=j(ajCjziaj)
由于有些朋友对于之前的写法有些疑惑,所以我这里修改了一下,这里为什么是 a j a_j aj而不是 a i a_i ai,这里要看一下softmax的公式了,因为softmax公式的特性,它的分母包含了所有神经元的输出,所以,对于不等于i的其他输出里面,也包含着 z i z_i zi,所有的 a a a都要纳入到计算范围中,并且后面的计算可以看到需要分为 i = j i = j i=j i ≠ j i \neq j i=j两种情况求导。
下面我们一个一个推:
∂ C j ∂ a j = ∂ ( − y j ln ⁡ a j ) ∂ a j = − y j 1 a j \frac{\partial C_j}{\partial a_j} = \frac{\partial (-y_j \ln {a_j})}{\partial a_j} = -y_j \frac{1}{a_j} ajCj=aj(yjlnaj)=yjaj1
第二个稍微复杂一点,我们先把它分为两种情况:
①如果 i = j i = j i=j
∂ a i ∂ z i = ∂ ( e z i ∑ k e z k ) ∂ z i = ∑ k e z k e z i − ( e z i ) 2 ( ∑ k e z k ) 2 = ( e z i ∑ k e z k ) ( 1 − e z i ∑ k e z k ) = a i ( 1 − a i ) \frac{\partial a_i}{\partial z_i} = \frac{\partial ( \frac{e^{z_i}}{\sum_k{e^{z_k}}})} {\partial z_i}= \frac{\sum_k{e^{z_k}e^{z_i} - (e^{z_i})^2}}{(\sum_k{e^{z_k} })^2 } = ( \frac{e^{z_i}}{\sum_k{e^{z_k}}})(1 - \frac{e^{z_i}}{\sum_k{e^{z_k}}}) = a_i(1-a_i) ziai=zi(kezkezi)=(kezk)2kezkezi(ezi)2=(kezkezi)(1kezkezi)=ai(1ai)
②如果 i ≠ j i \neq j i=j
∂ a j ∂ z i = ∂ ( e z j ∑ k e z k ) ∂ z i = − e z j ( 1 ∑ k e z k ) 2 e z i = − a i a j \frac{\partial a_j}{\partial z_i} = \frac{\partial ( \frac{e^{z_j}}{\sum_k{e^{z_k}}})} {\partial z_i} = -e^{z_j}(\frac{1}{\sum_k{e^{z_k}}})^2e^{z_i} = -a_ia_j ziaj=zi(kezkezj)=ezj(kezk1)2ezi=aiaj

ok,接下来我们只需要把上面的组合起来:

∂ C ∂ z i = ∑ j ( ∂ C j ∂ a j ∂ a j ∂ z i ) = ∑ j ≠ i ( ∂ C j ∂ a j ∂ a j ∂ z i ) + ∑ i = j ( ∂ C j ∂ a j ∂ a j ∂ z i ) \frac{\partial C}{\partial z_i} = \sum_j{( \frac{\partial C_j}{\partial a_j} \frac{\partial a_j}{\partial z_i})} = \sum_{j \neq i}{( \frac{\partial C_j}{\partial a_j} \frac{\partial a_j}{\partial z_i})} + \sum_{i =j}{( \frac{\partial C_j}{\partial a_j} \frac{\partial a_j}{\partial z_i})} ziC=j(ajCjziaj)=j=i(ajCjziaj)+i=j(ajCjziaj)
= ∑ j ≠ i − y j 1 a j ( − a i a j ) + ( − y i 1 a i ) ( a i ( 1 − a i ) ) =\sum_{j \neq i}{-y_j \frac{1}{a_j}(-a_ia_j)} + (-y_i \frac{1}{a_i})(a_i(1-a_i)) \quad\quad =j=iyjaj1(aiaj)+(yiai1)(ai(1ai))
= ∑ j ≠ i a i y j + ( − y i ( 1 − a i ) ) =\sum_{j \neq i}{a_iy_j} + (-y_i(1-a_i)) \quad\quad\quad\quad\quad\quad\quad\quad\quad =j=iaiyj+(yi(1ai))
= ∑ j ≠ i a i y j + a i y i − y i =\sum_{j \neq i}{a_iy_j} + a_iy_i - y_i \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =j=iaiyj+aiyiyi
= a i ∑ j y j − y i    =a_i\sum_j{y_j} - y_i \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\ \ =aijyjyi  

最后的结果看起来简单了很多,最后,针对分类问题,我们给定的结果 y i y_i yi最终只会有一个类别是1,其他类别都是0,因此,对于分类问题,这个梯度等于:
∂ C ∂ z i = a i − y i \frac{\partial C}{\partial z_i} = a_i - y_i ziC=aiyi

  • 152
    点赞
  • 414
    收藏
    觉得还不错? 一键收藏
  • 79
    评论
在深度学习中,交叉熵损失函数常用于多分类问题中衡量模型输出与真实标签之间的差异。对于使用softmax作为激活函数的输出层,我们可以使用交叉熵损失函数进行优化。 设模型的输出为$y=(y_1,y_2,\dots,y_n)$,其中$y_i$表示模型对第$i$类的预测概率。设真实标签为$z=(z_1,z_2,\dots,z_n)$,其中$z_i$表示第$i$类的真实标签(通常取值为0或1)。 交叉熵损失函数定义如下: $$L(y,z)=-\sum_{i=1}^n z_i \log(y_i)$$ 接下来,我们来求解交叉熵对每个预测值的导数。 计算$L$对$y_k$的偏导数: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} \sum_{i=1}^n z_i \log(y_i)$$ 由于交叉熵对于除$y_k$以外的其他预测值$y_i$的偏导数为0(可以通过计算验证),因此只需计算$L$对$y_k$的偏导数。 我们可以使用链式法则来进行求导: $$\frac{\partial L}{\partial y_k} = -\sum_{i=1}^n \frac{\partial}{\partial y_k} (z_i \log(y_i))$$ 当$i\neq k$时,$\frac{\partial}{\partial y_k}(z_i \log(y_i))=0$,因此上式可以简化为: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} (z_k \log(y_k)) = -\frac{z_k}{y_k}$$ 综上所述,我们得到交叉熵损失函数对于softmax模型输出的偏导数为: $$\frac{\partial L}{\partial y_k} = \begin{cases} y_k-z_k, & \text{if $k=j$}\\ y_k, & \text{if $k\neq j$} \end{cases}$$ 其中$j$表示真实标签为1的类别。这样,我们就可以利用该导数来进行反向传播,更新模型参数,从而优化模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值