hdu 5862(离线化+线段树+扫描线)

题意:
给定 n 条水平或竖直的线段,统计所有线段的交点个数。 n<=100000

解题思路:

是一种叫做扫描线的算法,扫描线就是解决线段之间交点个数的问题,这道题还是相对比较简单的,因题目保证每条线段都是竖直或水平的,我用的是线段树做的,当然也可以用树状数组来做效率会更高。将横线加入线段树,碰到竖线的时候进行查询操作,查询的值就是交点的个数。

一条竖线用一个数据类型来存,横线的两个端点则用两个数据结构来存,左端点代表在线段树中插入,右端点表示在线段树中删除。当插入、删除、查询的x值一样时要满足先加点,后查询最后删点,这一点用type处理一下,可以减少判断。详细看代码。
先学习一下扫描线算法在看这道题还是挺简单的。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define pb push_back
#define mp make_pair
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define calm (l+r)>>1
const int INF = 2139062143;

const int maxn=200010;

int n,m;///n是线段树的大小


struct line
{
    int type;
    ///type的处理非常巧妙,0代表查插入点,1代表查询点,2代表删除点
    ///对type排序之后就满足先插入再查询最后删点
    int x,y1,y2;
}p[maxn<<1];

struct Seg{
    int tag[maxn<<2];///tag记录节点更新的值
    int sum[maxn<<2];
    inline void pushup(int rt){
        sum[rt]=sum[rt<<1]+sum[rt<<1|1];
    }
    inline void pushdown(int rt,int l,int r){
        if(tag[rt]!=0){
            int m=calm;
            ll llen=m-l+1;
            ll rlen=r-m;
            tag[rt<<1]+=tag[rt];tag[rt<<1|1]+=tag[rt];
            sum[rt<<1]+=tag[rt]*llen; sum[rt<<1|1]+=tag[rt]*rlen;
            tag[rt]=0;
        }
    }
//    void print(int l,int r,int rt){///输出l——r的最底部节点
//        if(l==r){
//            printf("%I64d ",sum[rt]);
//            return;
//        }
//        pushdown(rt,l,r);
//        int m=calm;
//        print(lson);print(rson);
//    }
    void build(int l,int r,int rt){///建树
        tag[rt]=0;
        if(l==r){
            //scanf("%I64d",&sum[rt]);///在建树是进行输入
            //sum[l]=0;
            sum[rt]=0;
            return;
        }
        int m=calm;
        build(lson);build(rson);
        pushup(rt);
    }
    void add(int L,int R,int v,int l,int r,int rt){///将区间L—-R内的值加v
        if(L<=l&&r<=R){
            sum[rt]+=(ll)v*(r-l+1);
            tag[rt]+=v;
            return;
        }
        pushdown(rt,l,r);
        int m=calm;
        if(L<=m)add(L,R,v,lson);
        if(R>m)add(L,R,v,rson);
        pushup(rt);
    }
    ll query(int L,int R,int l,int r,int rt){///返回L——R区间内的和
        if(L<=l&&r<=R){
            return sum[rt];
        }
        pushdown(rt,l,r);
        int m=calm;
        ll ans=0;
        if(L<=m)ans+=query(L,R,lson);
        if(R>m)ans+=query(L,R,rson);
        return ans;
    }
}tree;

int yy[maxn<<1];///离散化用

bool cmp(line a,line b)
{
    if(a.x==b.x)
        return a.type<b.type;
    return a.x<b.x;
}

int main()
{
//    freopen("1006.in","r",stdin);
//    freopen("out.out","w",stdout);
    int T;
    scanf("%d",&T);
    while(T--)
    {

        int cntx=0,cnty=0;
        scanf("%d",&n);
        int x1,x2,y1,y2;
        int tot=0,cnt=0;//tot总的结构体数,cnt的个数
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            yy[++cnt]=y1;
            yy[++cnt]=y2;
            if(x1==x2)///竖线查询
            {
                p[++tot].type=1;
                p[tot].x=x1;
                p[tot].y1=min(y1,y2);
                p[tot].y2=max(y1,y2);
            }
            else///横线
            {
                p[++tot].type=0;///0代表横线的起点
                p[tot].x=min(x1,x2);
                p[tot].y1=y1;
                p[tot].y2=1;
                p[++tot].type=2;///2代表横线的终点
                p[tot].x=max(x1,x2);
                p[tot].y1=y1;
                p[tot].y2=-1;
            }
        }
        sort(yy+1,yy+cnt+1);
        sort(p+1,p+tot+1,cmp);///接下来是进行离散化
        cnty=unique(yy+1,yy+2*n+1)-yy-1;
        for(int i=1;i<=tot;i++)
        {
            if(p[i].type==1)
            {
                p[i].y1=lower_bound(yy+1,yy+cnty+1,p[i].y1)-yy;
                p[i].y2=lower_bound(yy+1,yy+cnty+1,p[i].y2)-yy;
            }
            else
            {
                p[i].y1=lower_bound(yy+1,yy+cnty+1,p[i].y1)-yy;
            }
        }
        tree.build(1,cnty,1);
        ll ans=0;
        for(int i=1;i<=tot;i++)
        {
            if(p[i].type==1)
            {
                ans+=tree.query(p[i].y1,p[i].y2,1,cnty,1);
            }
            else
            {
                tree.add(p[i].y1,p[i].y1,p[i].y2,1,cnty,1);
            }
        }
        printf("%I64d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值