题意:
给定
n
条水平或竖直的线段,统计所有线段的交点个数。
解题思路:
是一种叫做扫描线的算法,扫描线就是解决线段之间交点个数的问题,这道题还是相对比较简单的,因题目保证每条线段都是竖直或水平的,我用的是线段树做的,当然也可以用树状数组来做效率会更高。将横线加入线段树,碰到竖线的时候进行查询操作,查询的值就是交点的个数。
一条竖线用一个数据类型来存,横线的两个端点则用两个数据结构来存,左端点代表在线段树中插入,右端点表示在线段树中删除。当插入、删除、查询的x值一样时要满足先加点,后查询最后删点,这一点用type处理一下,可以减少判断。详细看代码。
先学习一下扫描线算法在看这道题还是挺简单的。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define pb push_back
#define mp make_pair
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define calm (l+r)>>1
const int INF = 2139062143;
const int maxn=200010;
int n,m;///n是线段树的大小
struct line
{
int type;
///type的处理非常巧妙,0代表查插入点,1代表查询点,2代表删除点
///对type排序之后就满足先插入再查询最后删点
int x,y1,y2;
}p[maxn<<1];
struct Seg{
int tag[maxn<<2];///tag记录节点更新的值
int sum[maxn<<2];
inline void pushup(int rt){
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
inline void pushdown(int rt,int l,int r){
if(tag[rt]!=0){
int m=calm;
ll llen=m-l+1;
ll rlen=r-m;
tag[rt<<1]+=tag[rt];tag[rt<<1|1]+=tag[rt];
sum[rt<<1]+=tag[rt]*llen; sum[rt<<1|1]+=tag[rt]*rlen;
tag[rt]=0;
}
}
// void print(int l,int r,int rt){///输出l——r的最底部节点
// if(l==r){
// printf("%I64d ",sum[rt]);
// return;
// }
// pushdown(rt,l,r);
// int m=calm;
// print(lson);print(rson);
// }
void build(int l,int r,int rt){///建树
tag[rt]=0;
if(l==r){
//scanf("%I64d",&sum[rt]);///在建树是进行输入
//sum[l]=0;
sum[rt]=0;
return;
}
int m=calm;
build(lson);build(rson);
pushup(rt);
}
void add(int L,int R,int v,int l,int r,int rt){///将区间L—-R内的值加v
if(L<=l&&r<=R){
sum[rt]+=(ll)v*(r-l+1);
tag[rt]+=v;
return;
}
pushdown(rt,l,r);
int m=calm;
if(L<=m)add(L,R,v,lson);
if(R>m)add(L,R,v,rson);
pushup(rt);
}
ll query(int L,int R,int l,int r,int rt){///返回L——R区间内的和
if(L<=l&&r<=R){
return sum[rt];
}
pushdown(rt,l,r);
int m=calm;
ll ans=0;
if(L<=m)ans+=query(L,R,lson);
if(R>m)ans+=query(L,R,rson);
return ans;
}
}tree;
int yy[maxn<<1];///离散化用
bool cmp(line a,line b)
{
if(a.x==b.x)
return a.type<b.type;
return a.x<b.x;
}
int main()
{
// freopen("1006.in","r",stdin);
// freopen("out.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
int cntx=0,cnty=0;
scanf("%d",&n);
int x1,x2,y1,y2;
int tot=0,cnt=0;//tot总的结构体数,cnt的个数
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
yy[++cnt]=y1;
yy[++cnt]=y2;
if(x1==x2)///竖线查询
{
p[++tot].type=1;
p[tot].x=x1;
p[tot].y1=min(y1,y2);
p[tot].y2=max(y1,y2);
}
else///横线
{
p[++tot].type=0;///0代表横线的起点
p[tot].x=min(x1,x2);
p[tot].y1=y1;
p[tot].y2=1;
p[++tot].type=2;///2代表横线的终点
p[tot].x=max(x1,x2);
p[tot].y1=y1;
p[tot].y2=-1;
}
}
sort(yy+1,yy+cnt+1);
sort(p+1,p+tot+1,cmp);///接下来是进行离散化
cnty=unique(yy+1,yy+2*n+1)-yy-1;
for(int i=1;i<=tot;i++)
{
if(p[i].type==1)
{
p[i].y1=lower_bound(yy+1,yy+cnty+1,p[i].y1)-yy;
p[i].y2=lower_bound(yy+1,yy+cnty+1,p[i].y2)-yy;
}
else
{
p[i].y1=lower_bound(yy+1,yy+cnty+1,p[i].y1)-yy;
}
}
tree.build(1,cnty,1);
ll ans=0;
for(int i=1;i<=tot;i++)
{
if(p[i].type==1)
{
ans+=tree.query(p[i].y1,p[i].y2,1,cnty,1);
}
else
{
tree.add(p[i].y1,p[i].y1,p[i].y2,1,cnty,1);
}
}
printf("%I64d\n",ans);
}
return 0;
}