线段树/树状数组+离散化,题目比较特殊,首先对x坐标进行离散化,然后将平行于y轴的线段拆分成两个点,按y坐标分。再按y坐标大小排序,遇到平行于x轴的查询区间x1到x2的大小即为交点数,遇到平行y轴的线段,如果是某条线段y坐标小的点,线段树上x1点+1,否则x1点-1。自己写的时候,离散化的数组忘记排序以及线段树的大小考虑错了导致超时。
/* ***********************************************
Author :Maltub
Email :xiang578@foxmail.com
Blog :htttp://www.xiang578.com
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
//#include <bits/stdc++.h>
#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define pb push_back
using namespace std;
typedef vector<int> VI;
typedef long long ll;
const ll mod=1000000007;
const int N=2e5+10;
int n,m,tot,has[N],in[N];
int sum[4*N];ll ans;
struct L
{
int a1,a2,b1,b2,f;
}p[N];
struct node
{
int x,y,l,r,f;
}gx[4*N],gy[4*N];
int cmp(node n1,node n2)
{
return n1.y<n2.y;
}
void update(int o,int l,int r,int x,int v)
{
if(l==r)
{
if(v==1)
sum[o]++;
else
sum[o]--;
}
else
{
int mid=(l+r)/2;
if(x<=mid) update(o*2,l,mid,x,v);
else update(o*2+1,mid+1,r,x,v);
sum[o]=sum[o*2]+sum[o*2+1];
}
}
ll query(int o,int l,int r,int x,int y)
{
if(x<=l&&y>=r)
{
return sum[o];
}
else
{
int mid=(l+r)/2;
if(y<=mid) return query(o*2,l,mid,x,y);
else if(x>mid) return query(o*2+1,mid+1,r,x,y);
else return query(o*2,l,mid,x,y)+query(o*2+1,mid+1,r,x,y);
}
}
/*
int bit(int x)
{
return x&-x;
}
int query(int x)
{
int ret=0;
while(x)
{
ret+=sum[x];
x-=bit(x);
}
return ret;
}
int add(int x,int v)
{
while(x<=m+1)
{
sum[x]+=v;
x+=bit(x);
}
}
*/
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int _,a1,a2,b1,b2;
scanf("%d",&_);
while(_--)
{
scanf("%d",&n);
tot=0;
for(int i=0;i<n;i++)
{
scanf("%d%d%d%d",&a1,&b1,&a2,&b2);
in[tot++]=a1;in[tot++]=a2;
if(a1==a2)
{
if(b1>b2) swap(b1,b2);
p[i].a1=a1;p[i].b1=b1;p[i].a2=a2;p[i].b2=b2;p[i].f=0;
}
else
{
if(a1>a2) swap(a1,a2);
p[i].a1=a1;p[i].b1=b1;p[i].a2=a2;p[i].b2=b2;p[i].f=1;
}
}
m=0;
has[0]=in[0];
sort(in,in+tot);
for(int i=1;i<tot;i++)
{
if(in[i]==in[i-1]) continue;
has[++m]=in[i];
}
int tx,ty;
tx=0;
ty=0;
for(int i=0;i<n;i++)
{
p[i].a1=lower_bound(has,has+m+1,p[i].a1)-has+1;
p[i].a2=lower_bound(has,has+m+1,p[i].a2)-has+1;
if(p[i].f==1)
{
node tmp;
tmp.l=p[i].a1;
tmp.r=p[i].a2;
tmp.y=p[i].b1;
gx[tx++]=tmp;
//printf("%d %d %d\n",tmp.l,tmp.r,tmp.y);
}
else
{
node tmp;
tmp.x=p[i].a1;
tmp.y=p[i].b1;
tmp.f=1;
gy[ty++]=tmp;
tmp.x=p[i].a1;
tmp.y=p[i].b2+1;
tmp.f=-1;
gy[ty++]=tmp;
}
}
memset(sum,0,sizeof(sum));
sort(gx,gx+tx,cmp);
sort(gy,gy+ty,cmp);
ans=0;
int j=0;
for(int i=0;i<tx;i++)
{
while(gx[i].y>=gy[j].y&&j<ty)
{
update(1,1,m+1,gy[j].x,gy[j].f);
//add(gy[j].x,gy[j].f);
j++;
}
ans+=query(1,1,m+1,gx[i].l,gx[i].r);
//ans+=query(gx[i].r)-query(gx[i].l-1);
}
printf("%lld\n",ans);
}
return 0;
}