一、数据倾斜
指分区中的数据分配不均匀,数据集中在少数分区中(不怕数据大,就怕数据倾斜)
数据倾斜发生时的现象
- 1、绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。这种情况很常见。
- 2、原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异常栈,是我们写的业务代码造成的。这种情况比较少见。
数据倾斜发生的原理
在进行shuffle的时候,必须将各节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。例如:大部分key对应10条数据,但是个别key却对应100玩体哦啊数据,那么大部分task可能就只分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到100万条数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
因此出现数据倾斜的时候,Spark作业看起来回运行得非常缓慢,甚至可能因此某个task处理的数据量过大导致内存溢出
如何定位导致数据倾斜的代码
数据倾斜只会发生在shuffle过程中。
常用的回引起数据倾斜的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。
出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。
二、数据倾斜的解决方案
方案一:使用Hive ETL预处理数据(数据清洗)
适用场景:
1)hive中文件大小不均匀
2)hive中key分布不均匀
实现原理: 这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。
方案优点: 实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。
方案缺点: 治标不治本,Hive ETL中还是会发生数据倾斜。
方案二:过滤少数会导致倾斜的key
使用场景:
1)倾斜的key,比如“-” 表示空数据,可以事前filter掉
2)倾斜的key,比如“-” 表示有效数据,单独处理
实现原理: 将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。
方案优点: 实现简单,而且效果也很好,可以完全规避掉数据倾斜。
方案缺点: 适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。
方案三:提高shuffle操作的并行度
实现原理: 增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。
方案优点: 实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。
方案缺点: 只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。
方案四:两阶段聚合(局部聚合+全局聚合)
适用场景:
对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。
实现原理: 将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。
实现方法: 在原先相同的key之前添加随机前缀,划分到不同的task中之后再去掉前缀,进行局部聚合
方案优点: 对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。
方案缺点: 仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。
方案五:将reduce join转为map join
使用场景: 在出现小表join大表的时候,可以将小表进行广播从而避免shuffle
实现原理: 普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。
方案优点: 对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。
方案缺点: 适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。
方案六:采样倾斜key并分拆join操作
使用场景: join类的操作中,由于相同的key过大占内存(小表不小),不能使用第5方案,但是倾斜的key种数不多的时候
实现方式:
- 第一步:对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。
- 第二步:将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。
- 第三步:接着将需要join的另一个RDD也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。
- 第四步:再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行 join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行 join了。
- 第五步:而另外两个普通的RDD就照常join即可。最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。
实现原理: 对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。
方案优点: 对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。
方案缺点: 如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。
方案七:使用随机前缀和扩容RDD进行join
使用场景: 如果在进行join操作时,RDD中有大量的key导致数据倾斜。
实现思路:
- 第一步:该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。
- 第二步:然后将该RDD的每条数据都打上一个n以内的随机前缀。
- 第三步:同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。
- 第四步:最后将两个处理后的RDD进行join即可。
实现原理: 将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。
方案优点: 对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。
方案缺点: 该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。
参考文献:
https://blog.csdn.net/lukabruce/article/details/81504220
https://blog.csdn.net/wgyzzzz/article/details/107902376