集合竞价看什么

       时间上,每个交易日的9点15分开始,市场进入开盘集合竞价阶段,那么,重点来了,这个时候看什么?我的习惯就是主要看哪些板块个股超预期,哪些板块个股低预期,尤其是近期强势品种的涨跌停个股,从而得知资金进攻的方向。一个新起来的题材有了首板,次日得到发酵后,同时同属性的个股需要实体板快速来确认板块的延续和强势。

  1. 首板选出同属性的个股,看着集合竞价的高开的个股,集合有明显抢筹迹象。
  2. 同属性题材在前排不分化。
  • 未匹配的成交量
  1. 顶部的量柱,不管是红是绿,是长是短,他们是指集合竞价期间,在白点虚拟撮合价位还有多少挂单量未匹配。
  2. 红柱代表还有买单未匹配,买单多于卖单,买方意愿强。
  3. 绿柱代表还有卖单未匹配,卖单多于买单,卖方意愿强。
  • 虚拟撮合的成交量
  1. 底部的红柱表示当前虚拟成交价高于前价;
  2. 红柱代表还有买单未匹配,买单多于卖单,买方意愿强;
  3. 螺柱代表还有卖单未匹配,卖单多于买单,卖方意愿强。

因9点20分前可以撤单,成交量柱可能突然降低;9点20后不能撤单,成交量柱只会越来越高,最后以9点25分的撮合成交量和成交价作为开盘数据。

简单判断抢筹的方法

一般来说,9点20后白点逐步增多,底部的红色量能柱不断变长,股价逐步推高,往往预示股价的拉升。反之,预示股价会走低。

超短竞价的预期

当天涨停状态

次日超预期

次日符合预期

次日不及预期

10点前涨停

高开6%以上

高开4%-6%

4%以下

10点-11点半涨停

高开4%以上

高开2%-4%

2%以下

13点-14点涨停

高开2%以上

平开0%-2%

0%以下

14点-15点涨停

高开

平开

0%以下

一字板

一字板

6%以上

6%以下

分歧烂板

高开2%以上

平开

0%以下

### 集合竞价算法的实现与原理 集合竞价是一种用于股票市场的定价机制,其主要目的是通过集中买卖双方的报价来确定开市或特定时间段的价格。这种机制的核心在于最大化匹配成交量,从而减少价格波动和人为操控的可能性[^4]。 #### 1. **集合竞价的基本原理** 集合竞价的目标是在某一时刻收集所有的买入和卖出订单,并找到一个能够使最大数量订单成交的价格点。具体来说,这一过程遵循以下几个原则: - 所有高于最终成交价的买单和低于最终成交价的卖单都将完全成交。 - 如果买方出价等于卖方要价,则按照时间优先级进行撮合。 - 成交量最大的价格被选作最终的开盘价。 此方法有效减少了因连续交易初期频繁的小额交易而导致的价格剧烈波动。 #### 2. **集合竞价的计算逻辑** 集合竞价的具体实现通常涉及以下步骤: ##### (1)数据准备阶段 系统会接收来自投资者的所有限价委托指令(包括买入和卖出)。这些指令会被分类存储以便后续处理。 ##### (2)模拟撮合阶段 通过对所有可能的价格水平逐一尝试,寻找能使总成交量达到峰值的那个唯一价格。这一步骤可以通过迭代或者更高效的优化算法完成。例如,假设当前市场上存在一系列离散价位 \( p_1, p_2, ..., p_n \),则需评估每种情况下的潜在成交量\[ V(p_i) = \sum_{j=1}^{m_b}(q_j^b - q_k^s)\]其中\( m_b \)表示在该价位下可满足条件的有效买单数目;而\( q_j^b,q_k^s \)分别代表对应于第 j 笔买单以及 k 笔卖单的数量。 ##### (3)结果确认阶段 一旦确定最优价格 P* 和相应的最大成交量 Qmax 后,系统将正式公布开盘价并启动正常盘中交易模式。 #### 3. **程序化实现示例** 以下是基于 Python 的简化版集合竞价算法伪代码展示: ```python def find_opening_price(buy_orders, sell_orders): prices = sorted(set([order['price'] for order in buy_orders + sell_orders])) max_volume = 0 best_price = None for price in prices: volume = sum(order['quantity'] for order in buy_orders if order['price'] >= price) volume -= sum(order['quantity'] for order in sell_orders if order['price'] <= price) if volume > max_volume and volume >= 0: # Ensure non-negative volumes only. max_volume = volume best_price = price return best_price, max_volume buy_orders = [{'price': 10.5, 'quantity': 10}, {'price': 10.7, 'quantity': 20}] sell_orders = [{'price': 10.4, 'quantity': 15}, {'price': 10.6, 'quantity': 25}] opening_price, total_volume = find_opening_price(buy_orders, sell_orders) print(f"Opening Price: {opening_price}") print(f"Total Volume Traded: {total_volume}") ``` 上述脚本定义了一个函数 `find_opening_price` 来找出最佳开盘价及其对应的最高成交量。它首先提取所有独特的价格点,接着逐一遍历每个候选价格以统计可能产生的总体交易量,最后选出那个能带来最多交易活动的价格作为最终答案。 #### 4. **复杂度分析** 由于需要遍历整个价格范围内的每一档位来进行比较运算,因此整体时间效率取决于输入订单总数 N 和不同价格层次 M 。最坏情形下的时间复杂度大约为 O(N * M), 而空间需求主要是用来保存原始订单列表及相关中间变量,故约为 O(N)[^2]. --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值