「年轻血脉觉醒」背后的热门行业洞察(小红书)

要说今年强势崛起的风潮,“新中式”必须拥有姓名!

电商平台爆款频出,从宝藏小众到头部大牌,众多玩家入场;各路社交媒体,明星、博主话题不断引爆,连“老钱风”刮到国内,都被“新中式”纳入麾下。

千瓜数据显示,2023年小红书平台“新中式”相关笔记声量增长390%+,互动总量增长188%+,热度高涨。符合当下年轻消费取向的“新中式”,在小红书走向普适化、现象化、商业化,品牌价值日益凸显。

- 趋势调研:

现代人喜欢的“新中式”是什么样的呢?2023年度有哪些热门与新兴内容?用户关注焦点是什么?如何种草?

本期千瓜推出《2023「新中式」潮流生活数据报告(小红书平台·四大热门赛道)。将进一步调研“新中式”大势下,美妆、服饰、食品保健品、家居家装赛道细分趋势,发掘解析市场与内容风向,望能为品牌未来营销带来启示。

报告概要:

新中式美妆

气韵在骨,风格在感

新中式穿搭

形制丰富,步入日常

新中式食养

野蛮生长,线下爆发

新中式家居

个性混搭,格物寄情

商业推广建议

本期调研,千瓜基于2023年度“新中式”风潮下的用户种草内容,深入探索品类、场景、风格、人群偏好等趋势,总结建议如下:

新中式美妆:底妆、眉眼、轮廓相关品类热度高,妆容板块关注度较高,消费者推崇“骨相美”,并因人制宜,“清冷感”妆容仍是主流,“英气感、玉碎感”等也相继冒头,或成未来新一波潮流。品牌营销可将侧重点放在眉眼气韵、轮廓勾勒与五官脸型、气质的匹配,以及产品成分、气味的呈现,并实时关注平台新兴的中式妆容风格。

新中式穿搭:除了汉服、旗袍热门款,还包括衬衫、配饰、鞋子等,常规品类覆盖面更广,并伴随新品类诞生。用户关注点聚焦“元素、面料、工艺”多个维度,对产品品质、表达的要求与期待更高,同时“通勤、约会”等日常场景穿戴度提升。未来产品理念、穿着体验、日常实穿度,或是服饰类品牌在新中式领域的营销重点。

新中式食养:商业投放热度高涨,新中式饮品风头仍盛,品牌卷传承卷创新,并开始给口感做减法。另一领域,新中式养生出圈,花样百出,除了吃喝,户外、运动、音乐皆是养生玩法。场景方面,“探店、围炉、送礼”热度较高,线下打卡活跃。美食保健品品牌或可进一步关注品类创新、养生内容的布局,通过线下和送礼场景,社交符号、仪式感打造等,打动消费者。

新中式家居:市场愈发成熟,众多品类迅速增长,新中式混搭“现代风、极简风、奶油风”等孕育多元风格,让消费者有更多的选择与想象空间;新中式配色也由静向动流动,不失高雅的同时适配不同性格的人群需求。此外,“绿植、器物、书画”等,成为新中式空间的氛围利器。品牌与达人合作共创中,或可从个性空间、精神空间、氛围空间,三个角度入手。

“新中式”大势下,消费者提出新需求,这要求品牌对传统文化也要有新注解,并深刻理解其奥义与精髓。不能只讲家国情怀,更要从产品、设计、叙事多个角度塑造品牌,让消费者看到传统与现代真正的融合新生。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995年提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作与竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机器学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
在移动开发领域,Android Studio 是谷歌推出的官方集成开发环境(IDE),专门用于开发 Android 应用。本项目旨在通过 Android Studio 创建一个模仿流行生活分享平台小红书的简单应用。小红书以其强大的社交功能和丰富的用户生成内容而闻名,融合了购物、博客和社交媒体的特点。通过复刻小红书,开发者可以学习构建类似的混合型应用。 1. Android Studio 核心知识点 界面设计:利用 Android Studio 的布局编辑器(可通过 XML 编码或拖放操作)来构建用户界面,涵盖 TextView、ImageView、RecyclerView 等多种组件。 主题与样式:掌握 Material Design 的应用,自定义主题和样式,以实现类似小红书的视觉效果。 Activity 与 Fragment:理解 Activity 和 Fragment 的生命周期,以及它们在多屏幕适配中的作用。 Intent:通过 Intent 实现页面跳转和数据传递。 2. 小红书 App 特性实现 登录注册:实现用户登录和注册功能,可能涉及 OAuth 或自定义认证机制。 数据获取与展示:使用网络请求库(如 Retrofit 或 OkHttp)从服务器获取数据,并通过 RecyclerView 展示,可能采用瀑布流布局。 图片加载:借助图片加载库(如 Glide 或 Picasso)优化图片加载速度和性能。 社交功能:实现评论、点赞、分享等社交功能,涉及数据库操作和网络通信。 动态通知:集成 Firebase Cloud Messaging(FCM)实现即时消息推送。 3. Android SDK 与相关库 Android SDK:熟悉不同版本的 Android API,确保应用的兼容性。 Room Persistence Library:用于本地数据库存储,缓存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值