常见的的样本数据归一化

数据的标准化通过缩放数据到特定区间,如[0,1],便于比较和加权。常见的方法包括min-max标准化、log函数、atan函数和z-score标准化。min-max存在新数据导致区间变化的问题,log转换需除以log10(max)确保在[0,1]区间,atan适用于非负数据,z-score标准化则使数据均值为0,标准差为1。" 107986286,5122595,在Ubuntu 18.04上部署Minio对象存储服务器,"['Linux', 'Minio', '存储', '安全', '云存储']
摘要由CSDN通过智能技术生成

      数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

  其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:

min-max标准化(Min-max normalization)

  也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值