题目:
已知n个人(以编号0,1,2...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。问最后的剩下的人。
思路:
1.直接使用list模拟约瑟夫环。删除节点
2.第二,分析之。对于n个数而言,剩下的人是f(n,m)=(f(n-1,m)+m)%n;其中n=1时,f(1,m)=0。
代码
方法1:
int josephuse(const int &n,const int &m){
if(n<1||m<1)
return -1;
list<int> number;
for(int i=0;i<n;i++)
number.push_back(i);
list<int>::iterator iter=number.begin();
list<int>::iterator next;
while(number.size()>1){
for(int j=1;j<m;j++){
iter++;
if(iter==number.end())
iter=number.begin();
}
next= ++iter;
if(next==number.end())
next=number.begin();
iter--;
number.erase(iter);
iter=next;
}
return *iter;
}
方法2:
int josephuse(const int &n,const int &m){
if(n<1||m<1)
return -1;
int last=0;
for(int i=2;i<=n;i++)
last=(last+m)%i;
return last;
}