深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解

随着深度学习技术的不断发展,神经网络架构变得越来越复杂,而这些复杂网络在训练时常常遇到梯度消失、梯度爆炸以及计算效率低等问题。为了克服这些问题,研究者们提出了多种网络架构,包括 残差网络(ResNet)加权残差连接(WRC)跨阶段部分连接(CSP)

本文将详细介绍这三种网络架构的基本概念、工作原理以及如何在 PyTorch 中实现它们。我们会通过代码示例来展示每个技术的实现方式,并重点讲解其中的核心部分。

目录

一、残差网络(ResNet)

1.1 残差网络的背景与原理

1.2 残差块的实现

重点

二、加权残差连接(WRC)

2.1 WRC的提出背景

2.2 WRC的实现

重点

三、跨阶段部分连接(CSP)

3.1 CSP的提出背景

3.2 CSP的实现

重点

四、总结


一、残差网络(ResNet)

1.1 残差网络的背景与原理

有关于残差网络,详情可以查阅以下博客,更为详细与新手向:

YOLO系列基础(三)从ResNet残差网络到C3层-CSDN博客

深层神经网络的训练常常遭遇梯度消失或梯度爆炸的问题,导致训练效果不好。为了解决这一问题,微软的何凯明等人提出了 残差网络(ResNet),引入了“跳跃连接(skip connections)”的概念,使得信息可以直接绕过某些层传播,从而避免了深度网络训练中的问题。

在传统的神经网络中,每一层都试图学习输入到输出的映射。但在 ResNet 中,网络不再直接学习从输入到输出的映射,而是学习输入与输出之间的“残差”,即

H(x) = F(x) + x

其中 F(x) 是网络学到的残差部分,x 是输入。

这种方式显著提升了网络的训练效果,并且让深层网络的训练变得更加稳定。

1.2 残差块的实现

下面是一个简单的残差块实现,它包括了两层卷积和一个跳跃连接。跳跃连接帮助保持梯度的流动,避免深层网络中的梯度消失问题。

图例如下:

代码示例如下:

import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千天夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值