根据MNE官网提供的教程进行复现,遇到各种问题的记录。
配置环境 python3.8 + Anaconda + pycharm
MNE-Python 是一个开源 Python 模块,用于处理、分析和可视化功能性神经影像数据(EEG、MEG、sEEG、ECoG 和 fNIRS)。
根据官方建议,将MNE-python安装在anaconda的虚拟环境中。
1. 安装Anaconda
2. 配置pycharm
2.1 导入MNE-python工具包
在pycharm的菜单栏里打开VCS-Create Git Repository
安装Git
选择一个空文件夹的路径(目标路径),点击确定
完成后VCS变成了Git
现在pycharm可以和GitHub进行连接了
这是官方给的工具包,从这里复制URL https://github.com/mne-tools/mne-python
进入pycharm,选择Git-Clone
如果失败,可以直接下载到本地
解压到目标文件夹,需要空文件夹。
在pychram中“File-open-目标文件夹” 打开
2.2 进入虚拟环境,安装依赖项
打开创建的Anaconda路径
选择目标里cmd.exe之后的路径
打开pycharm
进入setting设置界面,在Terminal中复制路径 cmd.exe “/K” E:/ProgramData/Miniconda3/Scripts/activate.bat E:/ProgramData/miniconda3
记得按照anaconda安装的位置修改路径
完成后打开terminal,可以看到已经在虚拟环境中了。
创建mne所需的环境
输入
conda create -n mne python=3.8 -y
创建成功后,进入虚拟环境,输入
conda activate mne
进入虚拟环境成功后,下载所需的module,输入
pip install -r requirements.txt
requirements.txt文件是GitHub导入的项目中有的
安装完成后,将需要运行的py文件复制进此文件夹