小学奥数
24点游戏
现在有一堆牌,从中拿四张牌,用 + , - , * , / 如果凑出24,你就赢了.
从中尽可能多的用乘法,凑出3和8,4和6,2和12.
2 3 8 9
算式:
8
÷
2
∗
(
9
−
3
)
=
24
8\div 2*(9-3)=24
8÷2∗(9−3)=24
抽屉原理
假如有10个苹果,要放进3个抽屉里,先求出每个抽屉里放的,用10/3,因为要求至少有多少个苹果,所以余数要平均分配.
20 6
算式:
20
÷
6
=
3......2
20\div6=3......2
20÷6=3......2
复杂奇偶性问题
偶数
+
−
偶数
=
偶数
偶数 +- 偶数 = 偶数
偶数+−偶数=偶数
偶数
+
−
奇数
=
偶数
偶数 +- 奇数 = 偶数
偶数+−奇数=偶数
奇数
+
−
奇数
=
偶数
奇数 +- 奇数 = 偶数
奇数+−奇数=偶数
偶数
∗
偶数
=
偶数
偶数 * 偶数 = 偶数
偶数∗偶数=偶数
偶数
∗
奇数
=
偶数
偶数 * 奇数 = 偶数
偶数∗奇数=偶数
奇数
∗
奇数
=
奇数
奇数 * 奇数 = 奇数
奇数∗奇数=奇数
1
∗
3
+
3
∗
5
+
5
∗
7
+
.
.
.
+
31
∗
33
1*3+3*5+5*7+...+31*33
1∗3+3∗5+5∗7+...+31∗33的结果是____。
A奇数 B偶数 C不能确定
正确答案: B
解答:
每一项乘积都是奇数,共有
32
÷
2
=
16
32\div2=16
32÷2=16个,16个奇数相加,结果为偶数。
和同近积大
张大爷今年在一个“L”形墙角围了一个长为22米的长方形篱笆,那么该篱笆所圈的面积最大是____平方米。
正确答案:121
解答:
篱笆的长+宽的和为22米,长与宽越接近,乘积越大,因此面积最大为
11
∗
11
=
121
11*11=121
11∗11=121平方米。
算式最值
将1~6这6个数分别填入算式□□□*□□□的□中,那么算式结果最大是_____
正确答案:342002
解答:
要使乘积最大,6和5放在首尾,1和2放在各位,那这两个数的合为1173,和固定,相差越小积越大,所以最大为
631
∗
542
=
342002
631*542=342002
631∗542=342002。
枚举法构造抽屉
这是以前的抽屉问题
这是现在的抽屉原理
现在一共有9种可能,分别是足球、篮球、排球、足球和足球、篮球和篮球、排球和排球、足球和篮球、足球和排球、篮球和排球。在用
20
÷
9
20\div9
20÷9,等于2有余数,我们就可以说有
2
+
1
=
3
2+1=3
2+1=3个同学,拿到的球的数量和种类完全一样。
但如果现在要求有多少个同学,还得保证一定有4个人拿到的情况一样,就给他捣乱,最倒霉的情况就是每个抽屉都有3个人,现在,只要在拿一个,就一定能保证4个人拿到的情况一样了,最后能求出有 3 ∗ 9 + 1 3*9+1 3∗9+1个同学。
排列组合辨析
排列和组合非常像,都是从一些物体中挑出几个来,这两个的区别就是要不要考虑顺序,排列是挑出来还得排一排,要考虑顺序,而组合就是和顺序没有关系,比如:
这里不用考虑顺序,可以用组合来求,算式是
C
4
2
C_4^2
C42(这里
C
4
2
C_4^2
C42表示在四个里面选两个)
如果给两个人买冰激凌的的话,就得考虑顺序,用排列,算式是
A
4
2
A_4^2
A42(这里
A
4
2
A_4^2
A42表示在四个里面选两个,而且考虑顺序)
分类挑选
豆豆和牛牛到山上郊游,豆豆要带喝的,有五瓶果汁,三瓶可乐和四瓶不同的矿泉水,要挑选两瓶同种类型,有多少种可能呢?可能都是果汁,可乐或矿泉水,就得分成三类来算,最后把他们加起来,就是答案最后的算式
C
5
2
+
C
3
2
+
C
4
2
=
19
C_5^2+C_3^2+C_4^2=19
C52+C32+C42=19,所以最后有19种方法
现在牛牛也要挑饼干,可以挑6袋饼干和5袋面包,要挑四袋,至少有两袋饼干,那么有多少种可能呢?饼干至少有两袋,可以分成2袋,3袋,4袋,这样来算,算式就是
C
6
2
∗
C
5
2
+
C
6
3
∗
C
5
1
+
C
6
4
=
150
+
100
+
15
=
265
C_6^2*C_5^2+C_6^3*C_5^1+C_6^4=150+100+15=265
C62∗C52+C63∗C51+C64=150+100+15=265种,所以有265种。
练习题
有10个三好学生,要把这10个学生分配到7个班里,有几种分法?
解答:
把三个学生分到三个班级
把三个学生分到两个班级
把三个学生分到一个班级
C
7
3
+
A
7
2
+
C
7
1
=
84
C_7^3+A_7^2+C_7^1=84
C73+A72+C71=84