题目链接
题目描述
幼儿园里有 N N N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。
但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K K K 个要求。
幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。
输入格式
输入的第一行是两个整数 N , K N,K N,K。
接下来 K K K 行,表示分配糖果时需要满足的关系,每行 3 3 3 个数字 X , A , B X,A,B X,A,B。
如果
X
=
1
X=1
X=1,表示第
A
A
A 个小朋友分到的糖果必须和第
B
B
B 个小朋友分到的糖果一样多。
如果
X
=
2
X=2
X=2,表示第
A
A
A 个小朋友分到的糖果必须少于第
B
B
B 个小朋友分到的糖果。
如果
X
=
3
X=3
X=3,表示第
A
A
A 个小朋友分到的糖果必须不少于第
B
B
B 个小朋友分到的糖果。
如果
X
=
4
X=4
X=4,表示第
A
A
A 个小朋友分到的糖果必须多于第
B
B
B 个小朋友分到的糖果。
如果
X
=
5
X=5
X=5,表示第
A
A
A 个小朋友分到的糖果必须不多于第
B
B
B 个小朋友分到的糖果。
小朋友编号从
1
1
1 到
N
N
N。
输出格式
输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 − 1 -1 −1。
样例 #1
样例输入 #1
5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
样例输出 #1
11
提示
【数据范围】
1
≤
N
≤
1
0
5
1≤N≤10^5
1≤N≤105 ,
1
≤
K
≤
1
0
5
1≤K≤10^5
1≤K≤105,
1
≤
X
≤
5
1≤X≤5
1≤X≤5,
1
≤
A
,
B
≤
N
1≤A,B≤N
1≤A,B≤N,
输入数据完全随机。
算法思想
题目给出了 N N N个小朋友的 K K K 个要求,这 K K K个要求可以分为 5 5 5类:
- A = B A = B A=B 等价于 A ≥ B , B ≥ A A\ge B,B\ge A A≥B,B≥A
- A < B A<B A<B 等价于 B ≥ A + 1 B\ge A+1 B≥A+1
- A ≥ B A\ge B A≥B
- A > B A\gt B A>B 等价于 A ≥ B + 1 A \ge B + 1 A≥B+1
- A ≤ B A\le B A≤B 等价于 B ≥ A B\ge A B≥A
除此之外,题目还要求每个小朋友都要分到糖果,对于每个小朋友的糖果数 X i X_i Xi,都有 X i ≥ 1 X_i\ge1 Xi≥1。
对于给定一系列 n n n元一次不等式组,求每个变量的最值问题,可以使用差分约束来求解。
差分约束
差分约束系统是一种特殊的 N N N元一次不等式组,它包含 N N N个变量 X i ∼ X n X_i\sim X_n Xi∼Xn,以及 M M M个约束条件,每个约束条件都是由两个变量作差构成的,形如 X i − X j ≤ C k X_i-X_j\le C_k Xi−Xj≤Ck,其中 C k C_k Ck是常数(可以是非负数,也可是是负数)。要解决的问题是:求一组解 X 1 = a i , X 2 = a 2 , . . . X n = a n X_1=a_i,X_2=a_2,...X_n=a_n X1=ai,X2=a2,...Xn=an,使所有约束条件都得到满足。
差分约束系统的每个约束条件 X i − X j ≤ C k X_i-X_j\le C_k Xi−Xj≤Ck可以变形为 X i ≤ X j + C k X_i\le X_j +C_k Xi≤Xj+Ck,这与单源最短路问题中的三角形不等式 d i s t [ j ] ≤ d i s t [ i ] + w dist[j]\le dist[i]+w dist[j]≤dist[i]+w非常相似。因此,可以将其转化为一个单源最短路问题求解,
求不等式组的可行解具体过程如下:
- 把每个变量 X i X_i Xi看作有向图中的一个节点 i i i,对于每个约束条件 X i ≤ X j + C k X_i\le X_j +C_k Xi≤Xj+Ck,从节点 j j j向节点 i i i连一条长度为 C k C_k Ck的有向边。
- 找到一个超级源点,使得该源点可以遍历到所有边,否则有一条边走不到,则该边对应的不等式就可能无法满足。
- 从源点求一遍单源最短路
-
如果存在负环,则原不等式组一定无解,如下图所示:
-
如果没有负环,则 X i = d i s t [ i ] X_i=dist[i] Xi=dist[i]就是原不等式组的一个可行解。
-
除此之外,该算法还可以求差分约束系统中每个变量的最值,前提是必须存在 X i ≤ C X_i\le C Xi≤C,其中 C C C是一个常数,否则只能求出变量间的相对关系。
求每个变量的最值具体过程如下:
-
建立一个虚拟源点 0 0 0,对于节点 X i X_i Xi存在 X i ≤ X 0 + C X_i\le X_0+C Xi≤X0+C,从节点 0 0 0向节点 i i i连一条长度为 C C C的有向边。
-
如果求的是变量的最大值,那么可以将其转化为一个单源最短路问题求上界,如下图所示:
-
如果求的是变量的最小值,那么可以将其转化为一个单源最长路问题求下界,如下图所示:
代码实现
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5 + 5, M = 3e5 + 5;
int h[N], e[M], w[M], ne[M], idx;
int n, m;
int cnt[N], q[N];
bool st[N];
LL d[N];
void add(int a, int b, int c) // 添加一条边a->b,边权为c
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
bool spfa() //spfa求最长路,返回true存在负环
{
int top = 0; //使用栈实现spfa
memset(d, -0x3f, sizeof d); //求最大值
d[0] = 0, q[top ++] = 0, st[0] = true;
while(top)
{
int u = q[-- top];
st[u] = false;
for(int i = h[u]; ~ i; i = ne[i])
{
int v = e[i];
if(d[v] < d[u] + w[i]) //最长路
{
d[v] = d[u] + w[i];
cnt[v] = cnt[u] + 1;
//判断是否存在正环
if(cnt[v] >= n + 1) return true; //注意,添加了虚拟源点
if(!st[v]) {
q[top ++] = v;
st[v] = true;
}
}
}
}
return false;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for(int i = 0; i < m; i ++)
{
int x, a, b;
scanf("%d%d%d", &x, &a, &b);
if(x == 1) add(a, b, 0), add(b, a, 0); //a>=b,b>=a
else if(x == 2) add(a, b, 1); //b>=a+1
else if(x == 3) add(b, a, 0); //a>=b
else if(x == 4) add(b, a, 1); //a>=b+1
else add(a, b, 0); //b>=a
}
//虚拟源点到每个点建一条边xi>=x0+1
for(int i = 1; i <= n; i ++) add(0, i, 1);
if(spfa()) puts("-1"); //存在负环无解
else
{
LL ans = 0;
for(int i = 1; i <= n; i ++) ans += d[i];
printf("%lld\n", ans);
}
return 0;
}