每周算法:差分约束求最值

题目链接

糖果

题目描述

幼儿园里有 N N N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。

但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K K K 个要求。

幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入格式

输入的第一行是两个整数 N , K N,K N,K

接下来 K K K 行,表示分配糖果时需要满足的关系,每行 3 3 3 个数字 X , A , B X,A,B X,A,B

如果 X = 1 X=1 X=1,表示第 A A A 个小朋友分到的糖果必须和第 B B B 个小朋友分到的糖果一样多。
如果 X = 2 X=2 X=2,表示第 A A A 个小朋友分到的糖果必须少于第 B B B 个小朋友分到的糖果。
如果 X = 3 X=3 X=3,表示第 A A A 个小朋友分到的糖果必须不少于第 B B B 个小朋友分到的糖果。
如果 X = 4 X=4 X=4,表示第 A A A 个小朋友分到的糖果必须多于第 B B B 个小朋友分到的糖果。
如果 X = 5 X=5 X=5,表示第 A A A 个小朋友分到的糖果必须不多于第 B B B 个小朋友分到的糖果。
小朋友编号从 1 1 1 N N N

输出格式

输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 − 1 -1 1

样例 #1

样例输入 #1

5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1

样例输出 #1

11

提示

【数据范围】

1 ≤ N ≤ 1 0 5 1≤N≤10^5 1N105 ,
1 ≤ K ≤ 1 0 5 1≤K≤10^5 1K105,
1 ≤ X ≤ 5 1≤X≤5 1X5,
1 ≤ A , B ≤ N 1≤A,B≤N 1A,BN,
输入数据完全随机。

算法思想

题目给出了 N N N个小朋友的 K K K 个要求,这 K K K个要求可以分为 5 5 5类:

  • A = B A = B A=B 等价于 A ≥ B , B ≥ A A\ge B,B\ge A AB,BA
  • A < B A<B A<B 等价于 B ≥ A + 1 B\ge A+1 BA+1
  • A ≥ B A\ge B AB
  • A > B A\gt B A>B 等价于 A ≥ B + 1 A \ge B + 1 AB+1
  • A ≤ B A\le B AB 等价于 B ≥ A B\ge A BA

除此之外,题目还要求每个小朋友都要分到糖果,对于每个小朋友的糖果数 X i X_i Xi,都有 X i ≥ 1 X_i\ge1 Xi1

对于给定一系列 n n n元一次不等式组,求每个变量的最值问题,可以使用差分约束来求解。

差分约束

差分约束系统是一种特殊的 N N N元一次不等式组,它包含 N N N个变量 X i ∼ X n X_i\sim X_n XiXn,以及 M M M个约束条件,每个约束条件都是由两个变量作差构成的,形如 X i − X j ≤ C k X_i-X_j\le C_k XiXjCk,其中 C k C_k Ck是常数(可以是非负数,也可是是负数)。要解决的问题是:求一组解 X 1 = a i , X 2 = a 2 , . . . X n = a n X_1=a_i,X_2=a_2,...X_n=a_n X1=ai,X2=a2,...Xn=an,使所有约束条件都得到满足。

差分约束系统的每个约束条件 X i − X j ≤ C k X_i-X_j\le C_k XiXjCk可以变形为 X i ≤ X j + C k X_i\le X_j +C_k XiXj+Ck,这与单源最短路问题中的三角形不等式 d i s t [ j ] ≤ d i s t [ i ] + w dist[j]\le dist[i]+w dist[j]dist[i]+w非常相似。因此,可以将其转化为一个单源最短路问题求解,

求不等式组的可行解具体过程如下:

  • 把每个变量 X i X_i Xi看作有向图中的一个节点 i i i,对于每个约束条件 X i ≤ X j + C k X_i\le X_j +C_k XiXj+Ck,从节点 j j j向节点 i i i连一条长度为 C k C_k Ck的有向边。
  • 找到一个超级源点,使得该源点可以遍历到所有边,否则有一条边走不到,则该边对应的不等式就可能无法满足。
  • 从源点求一遍单源最短路
    • 如果存在负环,则原不等式组一定无解,如下图所示: 在这里插入图片描述

    • 如果没有负环,则 X i = d i s t [ i ] X_i=dist[i] Xi=dist[i]就是原不等式组的一个可行解。

除此之外,该算法还可以求差分约束系统中每个变量的最值,前提是必须存在 X i ≤ C X_i\le C XiC,其中 C C C是一个常数,否则只能求出变量间的相对关系。

求每个变量的最值具体过程如下:

  • 建立一个虚拟源点 0 0 0,对于节点 X i X_i Xi存在 X i ≤ X 0 + C X_i\le X_0+C XiX0+C,从节点 0 0 0向节点 i i i连一条长度为 C C C的有向边。

  • 如果求的是变量的最大值,那么可以将其转化为一个单源最短路问题求上界,如下图所示:
    在这里插入图片描述

  • 如果求的是变量的最小值,那么可以将其转化为一个单源最长路问题求下界,如下图所示:
    在这里插入图片描述

代码实现

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5 + 5, M = 3e5 + 5;
int h[N], e[M], w[M], ne[M], idx;
int n, m;
int cnt[N], q[N];
bool st[N];
LL d[N];

void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
bool spfa() //spfa求最长路,返回true存在负环
{
    int top = 0; //使用栈实现spfa
    memset(d, -0x3f, sizeof d); //求最大值
    d[0] = 0, q[top ++] = 0, st[0] = true;
    while(top)
    {
        int u = q[-- top];
        st[u] = false;
        for(int i = h[u]; ~ i; i = ne[i])
        {
            int v = e[i];
            if(d[v] < d[u] + w[i]) //最长路
            {
                d[v] = d[u] + w[i];
                cnt[v] = cnt[u] + 1;
                //判断是否存在正环
                if(cnt[v] >= n + 1) return true; //注意,添加了虚拟源点
                if(!st[v]) {
                    q[top ++] = v;
                    st[v] = true;
                }
            }
        }
    }
    return false;
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    for(int i = 0; i < m; i ++)
    {
        int x, a, b;
        scanf("%d%d%d", &x, &a, &b);
        if(x == 1) add(a, b, 0), add(b, a, 0); //a>=b,b>=a
        else if(x == 2) add(a, b, 1); //b>=a+1
        else if(x == 3) add(b, a, 0); //a>=b
        else if(x == 4) add(b, a, 1); //a>=b+1
        else add(a, b, 0); //b>=a
    }
    //虚拟源点到每个点建一条边xi>=x0+1
    for(int i = 1; i <= n; i ++) add(0, i, 1);
    if(spfa()) puts("-1"); //存在负环无解
    else 
    {
        LL ans = 0;
        for(int i = 1; i <= n; i ++) ans += d[i];
        printf("%lld\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值