从零学:Hawkes Process(2)-霍克斯过程

声明:本文章是根据网上资料,加上自己整理和理解而成,仅为记录自己学习的点点滴滴。可能有错误,欢迎大家指正。


一、霍克斯过程(Hawkes Process)

霍克斯过程(Hawkes process)是一种自激励过程(self-exciting process),得名于1971年提出此概念的Hawkes教授。霍克斯过程中,一个事件的发生会增加接下来事件发生的概率。这种特性使得霍克斯过程特别适合于描述那些具有“链式反应”或“触发效应”的事件序列。例如:在线购物。如果某件商品突然受到大量关注或好评(事件),可能会吸引更多消费者购买该商品(后续事件)。而且,消费者之间的推荐和分享也会进一步推动购买行为。

它的主要思想:历史上发生的事件对未来事件的发生具有激励作用,即存在正向的相互影响。并假定历史事件对未来的影响被认为是单调指数递减的,然后以累加的形势叠加的。

二、Hawkes Process的数学表达式

Hawkes Process(霍克斯过程)是一种点过程,用于对事件随时间发生的情况进行统计建模,它能够捕捉事件之间的自我激发和聚集现象。

其基本数学表达式为:\lambda (t)=\mu +\sum_{i}^{t_{i}<t}\omega (t-t_{i})

其中:

  • \lambda (t) 表示霍克斯过程在时间 t 的“强度”(intensity)或“发生率”(rate),即在给定到该点之前发生的所有过去事件的情况下,在时间 t附近的一个小时间间隔内发生事件的期望值;
  • \mu是霍克斯过程的“背景发生率”(background rate),即在没有任何触发或级联效应的情况下事件发生的 rate,表示事件在不受其他因素影响时本身具有的一定发生概率
  •  \omega是一个“触发核函数”(triggering kernel),又称记忆核。它描述了过去的事件如何影响未来的事件,是一个取决于每个过去事件发生时间的函数,用于衡量每个过去事件对当前给定任意时间的影响强度(对当前事件发生强度的影响)。

核函数有多种表达方式,通常假设为指数形式。常见的一种形式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值