从零学:Hawkes Process(1)-泊松过程

 声明:本文章是根据网上资料,加上自己整理和理解而成,仅为记录自己学习的点点滴滴。可能有错误,欢迎大家指正。


在介更加复杂的point process(Hawkes Process)之前,本文先介绍point process基础概念,然后从最简单的point process,即Poisson processes(泊松过程)开始介绍。

1. 点过程

1.1 点过程(Point process)

点过程(Point process):点过程是指在某个空间中(例如时间和位置)分布的随机点的集合。

点过程的定义:点过程是指在非负实线上(通常表示时间)发生事件的随机过程。点过程的实现通常为事件在事件时间T_1, T_2, \ldots里发生,并体现在实线上的不同位置上。

想象我们在记录一些随机发生的事件,比如公交车到达公交站的时刻、手机收到短信的时间、股票价格发生大幅变动的瞬间等等。我们把这些事件发生的时刻看作一个集合,这个集合就是点过程。

比如说,我们只关注公交车在一天内到达公交站的时间。从早上 6 点开始,第一辆公交车在 6 点 10 分到达,第二辆在 6 点 25 分,第三辆在 7 点 05 分……把这些到达时间记下来,这一系列的时间点就构成了一个点过程。

点过程的关键在于它不仅仅是一堆随机的时间点,而在于这些时间点的分布规律,比如平均多久来一辆车,或者在某个时间段内来车的频率是不是更高等等。

另外,我们还可以给每个时间点赋予一些额外的信息,比如每辆公交车上的乘客数量,这就使点过程的描述更加丰富和有用。

1.2 计数过程

计数过程(counting process):是一种随机过程,用于描述在给定时间间隔内特定事件发生的次数。

假设我们定义一个随机变量N_t,表示在时间t \geq 0区间内某事件发生的次数。因此,N_t由一系列非负随机变量T_i唯一确定,满足如果T_i \leq \infty,则T_i < T_{i+1}

换句话说,计数过程记录了在时间之前发生的累积事件数量

N_t:=\sum_{i>=1}\mathbb{I}_{\{t>=T_i\}}

在上述公式中,\mathbb{I}_{\{.\}}是指示函数,当条件为真时取值为1,否则为0。计数过程从N_0 = 0开始,表示时间0之前没有发生事件。计数过程N_t是分段常数函数,在每个事件时间T_i处跃升1个单位。(此处的指示函数结合概率统计的基础知识进行理解的话,就是将每个事件记为A,当事件发生则取1,未发生则取0)

例如,点过程的公交到达的例子,变成计数过程,可以这样表示:从早上 6 点开始,第一辆公交车在 6 点 10 分到达,此时N(10)=1;第二辆在 6 点 25 分到达,此时N(25)=1;第三辆在 7 点 05 分到达,此时N(65)=1(假设我们以分钟为单位来计量时间)。

以此类推,对于任意给定的时间tN(t)表示在从早上 6 点到时间t这段时间内到达公交站的公交车数量。这样,N(t)就构成了一个关于公交车到达时间的计数过程。

从上可以看出,计数过程可以看作是一种特殊类型的点过程点过程是对事件在时间或空间中随机发生的建模。而计数过程重点关注在特定时间段内事件发生的数量

1.3 自激励过程(self-exciting processes )

自激励过程是一种点过程,其中过去的事件能够激发未来事件的发生。其特点在于过去发生的事件会增加未来在相近时间发生新事件的概率。

例如,地震后的余震就是一个自激励过程的典型例子。一次大地震发生后,在接下来的一段时间内,发生余震的概率会增加。或者假设我们在研究某个网站上用户的分享行为。如果一个用户分享了一篇文章,这可能会激发他的朋友们也在短时间内进行分享,这就是自激励。

在数学上,自激励过程通常用强度函

Hawkes跳跃扩散是一种统计模型,用于描述随机事件的发生和影响之间的关系。该模型由一个基础强度函数和一个激活函数组成,可以用来模拟和预测高频交易等事件的发生。 根据引用中的研究,J. Carlsson等人使用双变量霍克斯过程进行高频交易预测。霍克斯过程是Hawkes过程的一种特殊形式,用于描述事件发生的激发和反应过程。通过分析交易历史数据,他们可以利用霍克斯过程来预测未来的交易活动。 然而,引用指出,Hawkes过程的对数似然函数计算复杂度较高,特别是对于高频交易目的来说仍然是低效的。为了解决这个问题,引用提出了利用Ogata's modified thinning算法来模拟多维Hawkes过程。这种算法可以显著降低计算复杂度并提高效率。 综上所述,Hawkes跳跃扩散是一种用于描述随机事件发生和影响关系的统计模型。它可以通过使用霍克斯过程进行高频交易预测,并通过Ogata's modified thinning算法来提高计算效率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [R语言和Python用泊松过程扩展:霍克斯过程Hawkes Processes分析比特币交易数据订单到达自激过程时间序列](https://blog.csdn.net/qq_19600291/article/details/123531791)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [Multi_dimension Hawkes process 的模拟](https://download.csdn.net/download/newbiemath/9881962)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值