声明:本文章是根据网上资料,加上自己整理和理解而成,仅为记录自己学习的点点滴滴。可能有错误,欢迎大家指正。
在介更加复杂的point process(Hawkes Process)之前,本文先介绍point process基础概念,然后从最简单的point process,即Poisson processes(泊松过程)开始介绍。
1. 点过程
1.1 点过程(Point process)
点过程(Point process):点过程是指在某个空间中(例如时间和位置)分布的随机点的集合。
点过程的定义:点过程是指在非负实线上(通常表示时间)发生事件的随机过程。点过程的实现通常为事件在事件时间里发生,并体现在实线上的不同位置上。
想象我们在记录一些随机发生的事件,比如公交车到达公交站的时刻、手机收到短信的时间、股票价格发生大幅变动的瞬间等等。我们把这些事件发生的时刻看作一个集合,这个集合就是点过程。
比如说,我们只关注公交车在一天内到达公交站的时间。从早上 6 点开始,第一辆公交车在 6 点 10 分到达,第二辆在 6 点 25 分,第三辆在 7 点 05 分……把这些到达时间记下来,这一系列的时间点就构成了一个点过程。
点过程的关键在于它不仅仅是一堆随机的时间点,而在于这些时间点的分布规律,比如平均多久来一辆车,或者在某个时间段内来车的频率是不是更高等等。
另外,我们还可以给每个时间点赋予一些额外的信息,比如每辆公交车上的乘客数量,这就使点过程的描述更加丰富和有用。
1.2 计数过程
计数过程(counting process):是一种随机过程,用于描述在给定时间间隔内特定事件发生的次数。
假设我们定义一个随机变量,表示在时间
区间内某事件发生的次数。因此,
由一系列非负随机变量
唯一确定,满足如果
,则
。
换句话说,计数过程记录了在时间之前发生的累积事件数量。
在上述公式中,是指示函数,当条件为真时取值为1,否则为0。计数过程从
开始,表示时间0之前没有发生事件。计数过程
是分段常数函数,在每个事件时间
处跃升1个单位。(此处的指示函数结合概率统计的基础知识进行理解的话,就是将每个事件记为A,当事件发生则取1,未发生则取0)
例如,点过程的公交到达的例子,变成计数过程,可以这样表示:从早上 6 点开始,第一辆公交车在 6 点 10 分到达,此时
;第二辆在 6 点 25 分到达,此时
;第三辆在 7 点 05 分到达,此时
(假设我们以分钟为单位来计量时间)。
以此类推,对于任意给定的时间
,
表示在从早上 6 点到时间
这段时间内到达公交站的公交车数量。这样,
就构成了一个关于公交车到达时间的计数过程。
从上可以看出,计数过程可以看作是一种特殊类型的点过程。点过程是对事件在时间或空间中随机发生的建模。而计数过程重点关注在特定时间段内事件发生的数量。
1.3 自激励过程(self-exciting processes )
自激励过程是一种点过程,其中过去的事件能够激发未来事件的发生。其特点在于过去发生的事件会增加未来在相近时间发生新事件的概率。
例如,地震后的余震就是一个自激励过程的典型例子。一次大地震发生后,在接下来的一段时间内,发生余震的概率会增加。或者假设我们在研究某个网站上用户的分享行为。如果一个用户分享了一篇文章,这可能会激发他的朋友们也在短时间内进行分享,这就是自激励。
在数学上,自激励过程通常用强度函