方法一:二分法
double radical(double num)
{
double a = 0, b = num + 0.25, m;
while (1) {
m = (a + b) / 2;
if (m - a < 0.00001 || b - m < 0.00001)
{
break;
}
if ((a * a - num) * (m * m - num) < 0)
{
b = m;
} else {
a = m;
}
}
return m;
}
方法二:牛顿迭代法
牛顿法(Newton’s method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数 f(x)f(x) 的泰勒级数的前面几项来寻找方程 f(x)=0f(x)=0 的根。该法效率极高,应用极广,并不限于求解实数的平方根,相反求解实数的平方根只是其一个具体的应用而已。
接下来我们介绍一个更具效率的平方根的计算方法,即为牛顿拉普生方法(Newton-Raphson method)。
方法说明:
首先,选择一个接近函数 f(x)f(x) 零点的 x0x0,计算相应的 f(x0)f(x0)和切线斜率f′(x0)f′(x0)(这里 f′f′ 表示函数 ff 的导数)。然后我们计算穿过点 (x0,f(x0))(x0,f(x0)) 并且斜率为 f′(x0)f′(x0) 的直线和 xx 轴的交点的 xx 坐标,也就是求如下方程的解:
(x0)=(x0−x)f′(x0)
我们将新求得的点的x坐标命名为 x1x1,通常 x1x1 会比 x0x0 更接近方程 f(x)=0f(x)=0 的解。因此我们现在可以利用 x1x1 开始下一轮迭代。迭代公式可化简为如下所示:
xn+1=xn−f(xn)f′(xn)
已经证明,如果 f′f′ 是连续的,并且待求的零点 xx 是孤立的,那么在零点 xx 周围存在一个区域,只要初始值 x0x0 位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果 f′(x)f′(x) 不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。
对于求解实数平方根的函数 f(x)=x2−nf(x)=x2−n, 自然其根的迭代公式为:
xn+1=xn−f(xn)f′(xn)=xn−f(xn)2xn
double sqrtND(double A) //牛顿迭代法
{
double x0 = A + 0.25, x1, xx = x0;
for (;;)
{
x1 = (x0*x0 + A) / (2 * x0);
if (fabs(x1 - x0) <= DBL_EPSILON) break;
if (xx == x1) break; //to break two value cycle.
xx = x0;
x0 = x1;
}
return x1;
}
参考:
[1] https://blog.csdn.net/islotus/article/details/66976248
[2] https://blog.csdn.net/lanchunhui/article/details/50669288