
深度学习
文章平均质量分 85
无人不智能,机器不学习
AI及算法爱好者 -上海交通大学在读研究生
展开
-
DEFT: Detection Embeddings for Tracking论文解读
DEFT: Detection Embeddings for Tracking论文解读摘要大多数现代多目标跟踪(MOT)系统遵循按检测跟踪的模式,由检测器和将检测关联到轨迹的方法组成。在结合运动和外观特征以提供对遮挡和其他挑战的鲁棒性的跟踪研究方面已有很长的历史,但是这通常伴随着更复杂和更慢的实现的权衡。最近在流行的2D跟踪基准上取得的成功表明,通过使用最先进的检测器和依赖于单帧空间偏移的相对简单的关联,可以获得最高分,这显著优于利用学习的外观特征帮助重新识别丢失轨迹的现代方法。在本文中,我们提出了一个原创 2021-02-09 19:06:27 · 1177 阅读 · 0 评论 -
如何使用vs code连接服务器每次不用再输密码
如何使用vs code连接服务器每次不用再输密码首先在windows系统的cmd里面输入ssh-keygen保存公钥和私钥。一般保存在C盘的用户下面的.ssh隐藏文件夹。然后为了区分之前生成的私钥和公钥可以将这一对进行重命名。2. 在vs code 的配置文件里配置如下:IdentityFile C:/Users/用户/.ssh/vscode_rsa如图Host 10.168.4.15HostName 10.168.4.15User yckj3304IdentityFile C:/原创 2020-10-30 12:01:34 · 3102 阅读 · 0 评论 -
tensorboard的快捷使用方法
tensorboard使用方法建议不要使用docker来进行使用,因为直接使用的是文件,所以可以直接使用外部的环境。使用pip install tensorboard 进行安装。然后使用tensorboard --logdir log路径 --port 6007然后修改xshell里面的属性里面的隧道。代码里面的操作:首先 from tensorboardX import SummaryWriter在log处log = Logger()log.write(boneName)writer = Su原创 2020-09-01 20:49:38 · 299 阅读 · 0 评论 -
最新多目标跟踪算法综述-2020年08月23日
最新多目标跟踪算法综述-2020年08月23日多目标跟踪:SORT和Deep SORT1. 多目标跟踪是什么?多目标跟踪,即Multiple Object Tracking(MOT),主要任务中是给定一个图像序列,找到图像序列中运动的物体,并将不同帧的运动物体进行识别,也就是给定一个确定准确的id,当然这些物体可以是任意的,如行人、车辆、各种动物等等,而最多的研究是行人跟踪,由于人是一个非刚体的目标,且实际应用中行人检测跟踪更具有商业价值。绝大多数MOT算法无外乎这四个步骤:①检测 ②特征提取、运动原创 2020-08-23 14:50:50 · 9546 阅读 · 1 评论 -
如何利用opencv读取图片并且转换成pytorch可以使用的形式?
如何利用opencv读取图片并且转换成pytorch可以使用的形式?1.首先需要注意的是opencv读取图片的格式以及维度,后续转换需要注意opencv读取图片后的维度是B,H,W,C 并且读取的是bgr2.如何利用opencv读取图片并且转换成pytorch可以使用的形式:img = cv2.imread(img_dir)resized_img = cv2.resize(img, new_size, interpolation=cv2.INTER_LINEAR)#resized_img_rgb原创 2020-08-06 20:16:27 · 3421 阅读 · 0 评论 -
几句大白话告诉你如何上传文件夹到github或者gitlab上
几句大白话告诉你如何上传文件夹到github或者gitlab上1.首先git clone 一个仓库到本地或者服务器2.然后在克隆的文件夹下进行操作,如建立文件夹或者修改相关的操作3.然后使用git add . 命令进行添加,将所有的修改都添加上去,如果只想添加一个文件就用文件名取代点4. git commit -m "做了哪些操作”5. git push 然后输入用户名和密码(github或者gitlab上的用户名和密码)就可以了。中间可能会提示输入user.name 和user.email按原创 2020-06-19 20:52:16 · 1396 阅读 · 0 评论 -
一种值得借鉴的RPN:GARPN | Region Proposal by Guided Anchoring
GARPN | Region Proposal by Guided Anchoring**基于语义特征指导anchor生成。**主要思想是定位可能的目标中心点,然后根据中心点设置最优的anchor box。该方法联合预测各个位置可能的目标的中心点以及相应的尺度和宽高比。训练时相比于RPN:(1)GA-RPN产生的正样本数目更多,而且高IoU的proposal占的比例更大。(2)GA-RPN采用更高的阈值、使用更少的样本(3)使用高质量proposal的前提是根据proposal的分布调整训原创 2020-05-23 10:12:12 · 1805 阅读 · 0 评论 -
OCR之端到端任意形状的场景文字识别 ICCV2019 End-to-End Text Spotting
OCR之端到端任意形状的场景文字识别 ICCV2019 End-to-End Text Spotting端到端文本识别(End-to-End TextSpotting)是将文本阅读问题看成一个整体来解决,其基本思想是设计一个同时具有检测单元和识别单元的模型,共享其中两者的CNN特征,并联合训练。在推断阶段,此端到端模型可以在一个前向传播中预测场景图像中的文本位置和内容信息。这篇文章是谷歌...原创 2020-04-10 12:00:53 · 2936 阅读 · 0 评论 -
2020CVPR解读之何恺明新作PointRend:将图像分割视作渲染问题,显著提升语义/实例分割性能
2020CVPR解读之何恺明团队新作PointRend:将图像分割视作渲染问题,显著提升语义/实例分割性能论文原文源码【导读】Facebook人工智能实验室何恺明团队提出一种高效、高质量的目标和场景图像分割新方法。他们提出了一个独特的视角,将图像分割视为一个渲染问题,提出PointRend神经网络模块。建立在现有的最先进的模型之上,PointRend可以灵活地应用于实例分割和语义分割任务。...原创 2020-03-29 14:23:28 · 7571 阅读 · 1 评论 -
2020CVPR-目标检测论文解读之FSOD:Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
2020CVPR-目标检测论文解读之FSOD:Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector数据集参考1.摘要传统的目标检测方法通常需要大量的训练数据,而准备这样高质量的训练数据是非常劳动密集的。本文提出了一种新的少镜头目标检测网络,该网络只需少量的标注实例,就可以检测出不可见类的目标。该方法的...原创 2020-03-15 17:06:20 · 10022 阅读 · 0 评论 -
2020CVPR解读之百度的人脸检测HAMBox:Delving into Online High-quality Anchors Mining for Detection
2020CVPR解读之百度的HAMBox:Delving into Online High-quality Anchors Mining for Detection个人认为原文论文中貌似有一些细节的错误,个人能力有限,如有理解错误请见谅!OuterFace: 异常人脸,由于人脸尺度过小或者人脸尺度与anchor尺度不匹配,造成训练时匹配不到足够多的anchor(小于阈值K),影响了这些人脸的...原创 2020-03-13 22:28:36 · 2581 阅读 · 0 评论 -
2020CVPR解读之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection
2020CVPR论文解读之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection论文源码思考与学习1.论文详细解释了anchor-free与anchor-based的本质区别,此外,使用ATSS去尝试解决label assignment的问题2.ATSS是目标检测中可以学习借鉴的点,解决正负样本的选取问题。...原创 2020-03-09 19:27:19 · 2909 阅读 · 0 评论 -
DenseFusion(6D姿态估计)解读-2019cvpr
DenseFusion(6D姿态估计)解读-2019cvpr资源论文作者源码他人修改过代码作者的想法我们在研究中发现,从 RGB-D 输入中提取 6D 姿态信息时,很多点是被其他对象遮挡住的,这就会导致识别性能发生明显下降。在前人的工作中,一种流行的方法是利用全局特征进行 6D 位姿估计。但是当发生了遮挡,全局特征很大程度上会受到影响,导致预估测结果不佳。在这项工作中,我们生成了基于像...原创 2020-03-09 12:44:04 · 5022 阅读 · 0 评论 -
大白话解读2020CVPR-GhostNet论文以及相关代码: 超越MobileNetV3的轻量级网络
大白话解读GhostNet论文以及相关代码: 超越MobileNetV3的轻量级网络华为源码源码 为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果。该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特征图。从实验来看,对比其它模型,GhostNet的压缩效果最好,且准确率保持也很不错,论文思想...原创 2020-03-01 12:15:17 · 4393 阅读 · 0 评论 -
云从的多粒度网络(MGN)的结构设计与技术实现-ReID行人重识别
云从的多粒度网络(MGN)的结构设计与技术实现-ReID1.摘要全局特征和局部特征的结合是提高人的再识别(re-ID)任务识别性能的一种有效方法。以前的基于部分的方法主要集中在定位具有特定预定义语义的区域来学习局部表示,这增加了学习的难度,但对具有较大方差的场景却没有效率或鲁棒性。本文提出了一种融合不同粒度判别信息的端到端特征学习策略。我们仔细设计了多粒度网络(MGN),这是一个多分支的深层网...原创 2020-02-29 17:48:43 · 3745 阅读 · 1 评论 -
大白话解读行人重识别-ReID之DG-Net
综述参考:from:ReID综述(上)https://www.leiphone.com/news/201712/4Mvj2NBIxCN5bQZI.htmlfrom:ReID综述(下)https://www.leiphone.com/news/201712/JdVuO1BWAIrkPSyx.html一.DG-Net源码1. 摘要和简介利用生成数据去改进行人ReID:使用一种联合学习框架,...原创 2020-02-28 21:03:37 · 2934 阅读 · 1 评论 -
如何将Google的AutoAugment应用于实际问题
结合PIL使用from autoaugment import ImageNetPolicyimage = PIL.Image.open(path)policy = ImageNetPolicy()transformed = policy(image)结合Pytorch使用from autoaugment import ImageNetPolicydata = ImageFolder...原创 2020-02-09 11:03:11 · 1147 阅读 · 5 评论 -
EfficientNet的pyTorch版本的使用和训练方法
EfficientNet的pyTorch版本的训练和测试1. efficientNet 的pyTorch版本的测试和使用第三方PyTorch代码# pytorch 的efficientNet安装Install via pip:pip install efficientnet_pytorchOr install from source:git clone https://github...原创 2020-02-07 15:10:44 · 34464 阅读 · 10 评论 -
利用Anaconda管理包和环境以及分享环境
利用Anaconda管理包和环境以及分享环境1.管理包1.安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入 conda install package_name。例如,要安装 numpy,请键入 conda install numpy。2.大多数命令都是很直观的。要卸载包,请使用 conda remove package_name。要更新包,请使用 conda u...原创 2020-02-05 11:09:44 · 2221 阅读 · 0 评论 -
大白话讲解MobileNet-v3
大白话讲解MobileNet-v3MobileNet-v3可以说是轻量化网络的集大成者,所以在介绍MobileNet-v3之前我们有必要了解一下目前的一些轻量化网络及特点。1.轻量化网络在移动端部署深度卷积网络,无论什么视觉任务,选择高精度的计算量少和参数少的骨干网是必经之路。轻量化网络是移动端的研究重点,目前的一些主要的轻量化网络及特点如下:SqueezeNet:提出Fire Modul...原创 2019-12-09 21:33:41 · 22815 阅读 · 2 评论 -
谷歌团队告诉你如何选择目标检测的架构!!!
谷歌团队告诉你如何选择目标检测的架构!!!Github已有60k个star(太多技巧可以学习)谷歌团队在2017年CVPR上发表了一篇论文,主要讲述了从业者该如何选择目标检测的架构。以及根据应用场合及需要的条件进行速度及精度的权衡。本文主要是原论文的翻译。原论文链接现代卷积目标检测器的速度/精度权衡摘要本文的目的是作为选择一种检测架构的指南,该架构能够为给定的应用程序和平台实现正确的速度...原创 2019-12-04 17:21:34 · 719 阅读 · 0 评论 -
你想要的最新的目标检测算法在这里!
你想要的最新的目标检测算法在这里!自从2012年以来,基于深度学习的目标检测技术发展了很多,主要思想也发生了很大变化。下图展示了基于深度学习卷积神经网络的目标检测技术的主要里程碑。技术发展趋势是基于 anchor-free 的目标检测器(红色线)和 AutoML 技术(绿色线),这两项技术可能成为未来重要的研究方向。基于关键点的目标检测算法1.什么是基于关键点的目标检测算法(free-a...原创 2019-11-21 15:56:43 · 1911 阅读 · 0 评论 -
YOLO V3实践最全问题解决方案,比如couldn't open file: data/coco.names
YOLO V3实践最全问题解决方案,比如couldn’t open file: data/coco.names1. 第一步安装Darknetgit clone https://github.com/pjreddie/darknet.gitcd darknetmake如果这行得通,您应该会看到一大堆编译信息:mkdir -p objgcc -I/usr/local/cuda/incl...原创 2019-11-20 11:15:08 · 2761 阅读 · 0 评论 -
EfficientNet的细节理解及解读
Efficientnet网络学习源码论文第三方PyTorch代码一、总览卷积神经网络通常都是先在固定资源预算下开发设计,然后如果资源有多余的话再将模型结构放大以便获得更好的精度。在本篇论文中,我们系统地研究了模型缩放并且仔细验证了网络深度、宽度和分辨率之间的平衡可以导致更好的性能表现。基于这样的观察,我们提出了一种新的缩放方法——使用一个简单高效的复合系数来完成对深度/宽度/分辨率所有维...原创 2019-11-08 11:13:45 · 6162 阅读 · 0 评论 -
ICCV2019 最佳论文解读:SinGAN
SinGAN:Learning a Generative Model from a Single Natural Image (用一张自然图片,学出一个生成模型) 。ICCV 2019论文源码这篇论文提出了一种可以从单幅自然图像学习的非条件生成模型–SinGAN,能够捕捉图像的内部块分布信息,生成具有相同视觉内容的高质量、多变的样本。SinGAN包含一个金字塔结构的全卷积GAN,每个GAN...原创 2019-11-07 21:01:47 · 2083 阅读 · 1 评论 -
多个优秀的OCR算法解读
论文1:ICCV2019 End-to-End Text Spotting端到端任意形状的场景文字识别解读这篇文章是谷歌发表再2019ICCV上面的一篇文章,主要解决了自然场景下任意形状的文字识别问题,而且是一种端到端的方法。端到端文本识别(End-to-End Text Spotting)是将文本阅读问题看成一个整体来解决,其基本思想是设计一个同时具有检测单元和识别单元的模型,共享其中...原创 2019-11-06 22:16:21 · 13661 阅读 · 0 评论 -
一篇文章教会你如何使用anaconda管理包和环境
还不知道如何使用anaconda管理包和环境吗?1.管理包1.安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入 conda install package_name。例如,要安装 numpy,请键入 conda install numpy。2.大多数命令都是很直观的。要卸载包,请使用 conda remove package_name。要更新包,请使用 conda...原创 2019-04-24 10:43:40 · 4327 阅读 · 0 评论 -
迁移学习的使用技巧和在不同数据集上的选择
迁移学习的使用技巧和在不同数据集上的选择1.迁移学习是指调整预训练的神经网络并应用到新的不同数据集上。根据以下两个方面:新数据集的大小,以及新数据集和原始数据集之间的相似性使用迁移学习的方式将不同。包括以下四大情形:新数据集很小,新数据和原始训练数据相似新数据集很小,新数据和原始训练数据不同新数据集很大,新数据和原始训练数据相似新数据集很大,新数据和原始训练数据不同大型数据...原创 2019-04-28 18:35:46 · 8379 阅读 · 0 评论 -
一张图就可以看懂整个机器学习?请放大查看。
原创 2019-03-11 16:32:40 · 541 阅读 · 0 评论 -
深度学习之卷积网络-概述及概念思想通俗地总结
深度学习之卷积网络卷积神经网络(CNN)是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络的术语中,卷积的第一个参数x通常叫做输入,第二个参数叫做核函数。输出有时被称作特征映射。通俗要点总结1.卷积运算利用卷积核,将图中具有卷积核特征的部分提取出来,最后形成特征图谱2.池化池化可以把区域内最大的值来代表进行输出,也可以求取平均值,当然还有其他种类的池化函数。特点:保持原...原创 2019-02-18 22:27:23 · 688 阅读 · 0 评论 -
深度学习小白专场之循环神经网络和递归神经网络
深度学习小白专场之循环神经网络和递归神经网络全连接神经网络和卷积神经⽹网络,都只能单独的去处理单个的输入,且前后的输入之间毫无关系。但是在一些任务中,我们需要更好的去处理序列的信息,即前后的输⼊之间存在关系。比如,在理解一整句话的过程中,孤立理解组成这句话的词是不够的,我们需要整体的处理由这些词连接起来的整个序列;当我们处理视频时,我们也不能单独地仅仅分析每一帧,⽽要分析这些帧连接起来的整个序列...原创 2019-02-22 19:09:32 · 5411 阅读 · 0 评论 -
深度学习中的正则化方法及总结
深度学习中的正则化方法及总结机器学习的一个核心问题是设计不仅在训练数据上表现好,而且能在新输入上的泛化能力好的算法。在机器学习中,许多策略被显式的设计来减少测试误差。这些策略统称为正则化。在深度学习场景中我们几乎总是发现最好的拟合模型(从最小化泛化误差的意义上)是一个适当正则化的大型模型。下面来介绍几种策略,以创建这些正则化的大型深度模型。1.参数范数惩罚需要说明的是:在神经网络中,我们...原创 2019-02-17 08:36:11 · 1748 阅读 · 0 评论 -
深度学习优化算法参数经验设置
深度学习优化算法参数经验设置优化算法的设置:type:SGD/AdaDelta/AdaGrad/Adam/Nesterov/RMSPropSGD算法Caffe默认的算法,一般配合momentum使用,设置为0.9,当学习率下降很小的时候,可以将动量设置为0.99提高训练效果。AdaDelta算法冲量一般设置为0.95,delta一般设置成1e-6,base_lr 必须设置为1.0,l...原创 2019-06-27 17:18:34 · 2425 阅读 · 0 评论 -
卷积层尺寸的计算原理
卷积层尺寸的计算原理输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度、卷积核宽度、输入通道数、输出通道数(卷积核个数)输入矩阵、权重矩阵、输出矩阵这三者之间的相互决定关系卷积...原创 2019-07-04 08:21:39 · 1809 阅读 · 0 评论 -
不平衡数据集评价指标及常用解决方法
1.不平衡数据集的评估指标有哪些?评估指标1:recall,Precision,F-score,其中F-score是两者的中和,一般认为F-measure越高,分类器的性能越好;Precision就是提交给用户的结果里边,究竟有多少是对的;Recall是一共有这么多的有用结果(包括真正的正样本和负样本),系统究竟能判定出来多少是有用的(能够检出多少?),或者反过来说,我们究竟丢了多少有用的。...原创 2019-08-30 15:27:53 · 15439 阅读 · 0 评论 -
矩形框的IOU计算C++实现
可以利用opencv进行实现,非常简单,如果不使用opencv也可以使用min,max也不难。因此下面的C++代码包含了两种计算矩形框IOU的方法。#include<iostream>#include<algorithm>#include<vector> #include<opencv2/opencv.hpp> using namesp...原创 2019-08-30 16:43:18 · 7006 阅读 · 1 评论 -
非极大值抑制(NMS)原理及实现
NMS原理及实现给出一张图片和上面许多物体检测的候选框(即每个框可能都代表某种物体),但是这些框很可能有互相重叠的部分,我们要做的就是只保留最优的框。假设有N个框,每个框被分类器计算得到的分数为Si, 1<=i<=N。(1)建造一个存放待处理候选框的集合H,初始化为包含全部N个框;建造一个存放最优框的集合M,初始化为空集。(2)将所有集合 H 中的框进行排序,选出分数最高的框 m...原创 2019-08-30 16:59:35 · 1992 阅读 · 0 评论 -
C++实现卷积操作
卷积操作的C++实现#include <opencv2/opencv.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/core/core.hpp>using namespace std;using namespace cv;Mat Kernel_test_3_3 = (...原创 2019-09-03 14:51:04 · 4174 阅读 · 1 评论 -
k折交叉验证-python 图像数据相关
k折交叉验证原理及实现-python 图像数据相关K折就是讲数据集切分成K小块,验证集和测试集相互形成补集,循环交替import numpy as npk = 3num_val_samples = len(train_data) // knum_epochs = 100all_scores = []for i in range(k) print('prcessing fol...原创 2019-09-26 16:49:37 · 1228 阅读 · 0 评论 -
搞深度学习如何找到需要的代码
搞深度学习如何找到需要的代码此博客整理了查找所需要代码的最佳方法以及与如何找到paper相关联的网址,都是非常不错的网址。此网址集合了arXiv上最新的关于深度学习或者机器学习的研究论文并且关联了code,还可以直接看star 非常不错。Paperswithcode此网址可以利用扩展工具查找coderesearch code计算机界的Google scholar ,非常好用,体验过你...原创 2019-10-02 09:07:10 · 3710 阅读 · 1 评论