graph-embedding poi recommendations

将用户-poi,poi-poi图进行嵌入学习,从而可以在低纬空间对poi进行描述,完成下一个poi的推荐。


最近在理解了KL散度的基础上重新对推导过程进行了分析,其中KL散度的理解主要基于交叉熵和信息熵的理解,根据 交叉熵和相对熵 和 KL散度 的介绍。通过对最短编码,或最小代价值的认知,也即损失最小的情况,某现象出现的概率和编码(信息总量,对概率倒数取log值)的乘积,交叉熵即为错误编码长度(错估概率的倒数取log值)的代价(差值)。

 

论文中以边的权重为正确概率,以二阶相似度为估计值(节点向量的积),在推导结果中去掉了常数值,也即权重的值得出的正确概率。最后推出目标函数:


 

 

1,在poi-poi图中,目标函数利用KL-散度进行度量(利用softmax函数值和出入度比值计算),然后结合了Negative sampling的优化策略,学习poi的向量表示。GME模型

2,用户偏好的变化,简单的利用了用户访问列表的前序poi影响的指数衰减:qi为poi向量


3,时序影响,引入时间threshold,当连续访问的时序小于ΔT时,才会在两个POI直接构成边,通过改变ΔT的大小,研究时序影响。学习过程是一致的。GME-S模型

 

推荐的时候,通过得分排序推荐最前的n个poi,(给定用户u和时间t,推荐未被访问的地点v):


其中p为用户偏好,q为poi向量。

 

最后实验中,将D分为Dtrain和Dtest,利用命中率accuracy作为标准,对比了baseline模型后,也对比了参数的影响,比如维度d和ΔT的影响,时间需要适中,太大会退化为基本模型GME,太小会过滤掉太多边导致无法学习。

 

总结,用户的影响(偏好)并不明显,主要体现在前序访问的综合中,并没有user向量进行影响,可以改进?

 

本为在CIKM中也有发表,主体架构替换为PTE,异构网络嵌入模型,可能是同时进行研究的。厉害啊!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值