Graph-based POI Embedding

依然是POI推荐问题,这里作者将POI推荐的向量学习抽象为异构的网络,从而融合了序列因素、地理影响、时序变化影响和语义影响,利用图嵌入技术将这些信息降到低维空间中。如图:


POI-POI,POI-region,POI-time,POI-Word 分别被看作双向图处理,依次获取序列、地理位置、时间和语义信息。图1,权重如GME-s,在时间片中的共现次数;图2,存在置为1;图3,根据频次设置权重;图三权重为单词的tf-idf值。

 

相应的,传统POI推荐的主要挑战在于:1,数据稀疏,data sparsity; 2,环境感知,context awareness; 3,冷启动, cold start;4,用户偏好的动态性, dynamic of personal preferences.  与此同时,解决的途径包括:1,序列信息的影响,sequential efforts;2,位置因素,geographic influence;3,时间因素,temporal cyclic efforts;4,语义信息的融合, semantic information. 

 

本文利用异构网络,将所有信息嵌入到低维的共享空间中,解决现有挑战。所以最后的目标函数为四个异构目标函数的和,分别计算,优化过程如GME(前一篇)是一样的 ——》 joint training

 

同样的,本文利用POI embedding表示用户偏好的动态性,相比较于训练用户向量,这种方法可以避免重复的训练——当用户行为动态变化时。

 

另外,需要对用户进行推荐的时候,即已知用户,时间和地点,求最相似的位置,采用公式:


最后更加排序进行推荐。语义向量在冷启动的时候采用(特别的,可以添加不同的图进去,从而融入不同的信息,比如user-poi网络等)

 

至于实验部分,主要内容和上一篇是基本类似的。增加了冷启动的测试 on the Foursquare data sets. 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值