普里姆算法(Prim)

生成树概念:一个连通图的生成树,是极小连通子图,也意味着它包含图的所有顶点和尽可能少的边(n个结点,n-1条边),意味着对于生成树而言,去掉其中一边会使生成树变成非连通图,再增加一条边,就会形成图中的一个回路。

最小生成树:如果无向连通图是一个网(带权图),那么在所有的生成树中必定有一棵边的权值总和最小的数,则称这棵树为最小代价生成树,简称最小生成树。

MST性质:构成最小生成树大多利用了MST性质,设N∈(V,E)是一个连通网,U是顶点集的一个非空子集,若(u,v)是一条具有最小权值的边,其中u∈U,v∈(V-U),则存在一棵含边(u,v)的最小生成树。

MST性质单看概念可能不好理解,我们知道有这性质就行,而且普利姆算法就是采用了这个性质。

普利姆算法的逻辑示意图
普里姆算法是用来生成最小生成树,它采用的就是MST性质。普里姆先设定 U={1},那么V-U={2,3,4,5,6},所以找从节点1到V-U中的顶点的最小权值,找到了顶点3,现在让U={1,3} ,V-U={2,4,5,6},现在找从顶点1,顶点3分别开始到V-U集合中顶点的最小权值,找到了顶点6,现在U={1,3,6},V-U={2,4,5},再重复上述过程,直到U等于V说明所有的顶点都在U中了,最小生成树构建完成。
在这里插入图片描述

算法(伪代码语言)如下:
数据结构

tpedef struct{
int Vertices[MaxVertices];//顶点信息数组
int Edge[MaxVertices][MaxVertices];//边的权信息矩阵
int numV;//顶点数
int numE;//边数
} AdjMatrix 


tpedef struct{
int begin; //边的起点
int end; //边的终点
float length; //权值
} MinSpanTree    

算法

void Prim(AdjMatrix G){ //G是图结构
int n=G.numV;  //顶点数
MinSpanTree  e,mintree[n-1];
	for(int j=1;j<n;j++){
	mintree[j-1].begin=1;
	mintree[j-1].end=j+1;
	mintree[j-1].length=G.edge[0][j];
	}  //顶点1∈U,mintree数组存放的其实是 U与V-U集合的权值的边 

	for(int k=0;k<n-1;k++){ //求第K+1条边
		min=MaxWeight;
		for(int j=k,j<n-1;j++){
			if(mintree[j].length<min){
			min=mintree[j].length;
			m=j;
			}//寻找权值最小的边,并记录下标
        e=mintree[m];
        mintree[m]=mintree[k];
        mintree[k]=e; //两条边互换位置
        v=mintree[k].end;
        for(j=k+1;j<n-1;j++){ 其实意味着mintree[k].end 入 U,所以循环从K+1开始
        int d=G.Edge[v-1][mintree[j].end-1]; // mintree[j].end 意味着剩下的顶点,他们的集合就是V-U
        if(d<mintree[j].length){ 
        mintree[j].length=d;
        mintree[j].begin=v;
        }
        }
		}
     }
}

解释:第一个for循环初始化mintree
信息如下
mintree[0]={begin:1,end:2,length:6}
mintree[1]={begin:1,end:3,length:1}
mintree[2]={begin:1,end:4,length:5}
mintree[3]={begin:1,end:5,length:正无穷}
mintree[4]={begin:1,end:6,length:正无穷}

然后通过第二个for循环,循环从k=0开始
找mintree里面权值最小的边,mintree[1],将mintree[1]的与mintree[0]互换位置,mintree结果如下
mintree[0]={begin:1,end:3,length:1}
mintree[1]={begin:1,end:2,length:6}
mintree[2]={begin:1,end:4,length:5}
mintree[3]={begin:1,end:5,length:正无穷}
mintree[4]={begin:1,end:6,length:正无穷}
现在相当于 U={1,3 } V-U={2,4,5,6}
所以第三个循环从K+1开始,寻找顶点3与剩下的顶点的边的权值大小,因为1与其他顶点的权值已经存在mintree里面了,当顶点3与剩下的顶点的权值小于顶点1与其他顶点权值大小时候,进行mintree的更新。回到继续第二个循环,找权值最小的边…

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法都是用于解决最小生成树问题的算法。 最小生成树问题是指在一个无向连通图中,找到一棵生成树,使得树上所有边的权值之和最小。生成树是指一个无向图的生成子图,它是一棵树,且包含图中所有顶点。 下面我们分别介绍普里姆算法和克鲁斯卡尔算法: 1. 普里姆算法 普里姆算法是一种贪心算法,它从一个任意点开始,逐步扩展生成树,每次选择当前生成树到未加入的点中距离最近的点,并将其加入生成树。 具体实现步骤如下: - 随机选择一个起始点,将其加入生成树。 - 在生成树中的所有节点中,找到到未加入生成树的节点中距离最小的节点,将其加入生成树。 - 重复以上步骤,直到生成树包含了所有节点。 2. 克鲁斯卡尔算法 克鲁斯卡尔算法也是一种贪心算法,它从边集合中选择边,逐步扩展生成树,每次选择当前边集合中权值最小的边,并将其加入生成树。 具体实现步骤如下: - 将所有边按照权值从小到大排序。 - 从权值最小的边开始,逐个加入生成树,如果加入当前边会形成环,则不加入该边。 - 重复以上步骤,直到生成树包含了所有节点。 两种算法的时间复杂度都是O(ElogE),其中E为边数。普里姆算法在处理稠密图时效率更高,而克鲁斯卡尔算法在处理稀疏图时效率更高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值