图形学学习 TOPIC 1 Geometry&Representation

本文写作动机主要在于老师上课中英文交杂,听不懂的太多QwQ
主要用于个人学习和整理

Geometry

Basic Elements

scalars

vectors

-direction(方向)
-magnitude(大小)

(1)operations:
(a) inverse(取相反)
(b) be multipiled by a scalar
(c)zero vector: undefined orientation
(d) sum of two vectors is vector
(减法这里本质就是inverse+sum)

(2)Linear Vector Spaces
本质为向量的集合
operations:
上面的(b)(d)

(3)向量空间不适合几何
因为没有position

points

Location in space

(1)operations : between points and vectors
(a) v=P-Q
(b) P=v+Q
(v:vector P.Q:points)

Affine Spaces(仿射空间)

Point + a vector space

operations

标量
(a)标量间的运算
向量
(b)标量x向量
(c)向量加法(含减法)

(d)点+向量=点 点-点=向量
(e)定义:1·P=P
(f)定义:0·P= 0 ⃗ \vec{0} 0

我们看到,在定义中没有Point类型的加减运算,也没有scalar*point这类运算。
但是实际中,我们常常见到 α 1 p 1 + α 2 p 2 \alpha_1p_1+\alpha_2p_2 α1p1+α2p2这样的公式。首先说明,这类公式是有意义的,原因在于它们的出现是由point+vector这类运算推导出来的,具体可以接着往下看,会逐渐明白的。

Rays and Line Segments

P( a) = Q + a (R-Q)=Q+av
=aR + (1-a)Q
(点=点+向量–>点=点+点)
在这里插入图片描述

Convexity

凸:当且仅当 P.Q属于该多边形,但是线段PQ不完全属于该多边形
在这里插入图片描述

Affine Sums(仿射和)


P1、P2…都是仿射空间中的点,

(1)上式中的P是point 当且仅当 右式系数和为1

证明:
P = α 1 P 1 + α 2 P 2 + . . . + α n P n ; ⇔ P = α 1 ( P 1 − P 2 ) + ( α 1 + α 2 ) ( P 2 − P 3 ) + ( α 1 + α 2 + α 3 ) ( P 2 − P 3 ) + . . . + ( α 1 + . . . + α n ) ( P n − 1 − P n ) + ( α 1 + . . . + α n ) P n ; ∵ P o i n t − P o i n t = V e c t o r S c a l a r ∗ V e c t o r = V e c t o r ∴ 令 ( α 1 + . . . + α i ) ( P i − P i + 1 ) = V ⃗ i ∴ P = V ⃗ 1 + V ⃗ 2 + . . . + V ⃗ n − 1 + ( α 1 + . . . + α n ) P n ∵ V e c t o r + V e c t o r = V e c t o r ∴ 令 V ⃗ 1 + V ⃗ 2 + . . . + V ⃗ n − 1 = V ⃗ ∴ P = V ⃗ + ( α 1 + . . . + α n ) P n P=\alpha_1P_1+\alpha_2P_2+...+\alpha_nP_n;\\ \Leftrightarrow \\P=\alpha_1(P_1-P_2)+(\alpha_1+\alpha_2)(P_2-P_3)+(\alpha_1+\alpha_2+\alpha_3)(P_2-P_3)+...\\+(\alpha_1+...+\alpha_n)(P_{n-1}-P_n)+(\alpha_1+...+\alpha_n)P_n;\\ \quad \\ \because Point-Point=Vector \quad Scalar*Vector=Vector\\ \therefore 令(\alpha_1+...+\alpha_i)(P_i-P_{i+1})=\vec V_i\\ \therefore P=\vec V_1+\vec V_2+...+\vec V_{n-1}+(\alpha_1+...+\alpha_n)P_n\\ \because Vector+Vector=Vector\\ \therefore 令\vec V_1+\vec V_2+...+\vec V_{n-1}=\vec V\\ \therefore P=\vec V+(\alpha_1+...+\alpha_n)P_n\\ P=α1P1+α2P2+...+αnPn;P=α1(P1P2)+(α1+α2)(P2P3)+(α1+α2+α3)(P2P3)+...+(α1+...+αn)(Pn1Pn)+(α1+...+αn)Pn;PointPoint=VectorScalarVector=Vector(α1+...+αi)(PiPi+1)=V iP=V 1+V 2+...+V n1+(α1+...+αn)PnVector+Vector=VectorV 1+V 2+...+V n1=V P=V +(α1+...+αn)Pn
⇒ P 是 P o i n t 则 右 式 系 数 和 为 1 ∵ ( α 1 + . . . + α n ) P n = P − V ⃗ 且 P 是 P o i n t ∴ ( α 1 + . . . + α n ) P n 是 P o i n t ∵ 1 ⋅ P o i n t = P o i n t ∴ ( α 1 + . . . + α n ) = 1 \Rightarrow P是Point 则 右式系数和为1\\ \because (\alpha_1+...+\alpha_n)P_n=P-\vec V 且P是Point\\ \therefore (\alpha_1+...+\alpha_n)P_n是Point\\ \because 1 \cdot Point=Point\\ \therefore (\alpha_1+...+\alpha_n)=1\\ PPoint1(α1+...+αn)Pn=PV PPoint(α1+...+αn)PnPoint1Point=Point(α1+...+αn)=1
⇐ 右 式 系 数 和 为 1 则 P 是 P o i n t ∵ ( α 1 + . . . + α n ) = 1 且 P n 是 P o i n t ∴ P ′ = ( α 1 + . . . + α n ) P n = 1 ⋅ P n = P n ∴ P = V ⃗ + P ′ ∴ P 是 P o i n t \Leftarrow 右式系数和为1 则P是Point\\ \because (\alpha_1+...+\alpha_n)=1 且 P_n是Point\\ \therefore P'= (\alpha_1+...+\alpha_n)P_n=1\cdot P_n=P_n\\ \therefore P=\vec V+P'\\ \therefore P是Point 1PPoint(α1+...+αn)=1PnPointP=(α1+...+αn)Pn=1Pn=PnP=V +PPPoint

(2)若a1,a2,…系数都 ≥0 ,则我们能够获得由P1,P2…构成的凸包

证明:(待更新)

planes

一个平面可以由一个点和两个向量或三个点定义
在这里插入图片描述

Representation

到目前为止,我们已经能够在不使用任何参考系(如坐标系)的情况下处理几何实体。但是在描述点的时候,我们仍需要一个坐标系。

Dimension

在向量空间中,线性无关向量的最大数目是固定的,称为空间的维数

Representation

在这里插入图片描述注意,这种表示是关于一个特定的基的

Frames

(这里没有读懂)

homogeneous coordinate(齐次坐标系)

起因在于Points和vector会出现confuse
并且一个三维矩阵无法表示空间中的所有变换(见TOPIC 3)
在这里插入图片描述齐次坐标是所有计算机图形系统的关键

(1)所有的标准变换(旋转,平移,缩放)都可以通过使用4 × 4矩阵的矩阵乘法来实现
(2)对于正交观察,我们可以保持vector的w=0,point的w=1

二维坐标系到三维齐次坐标的变换:
( X , Y , w ) − − > ( x , y ) : x = X w , y = Y w ( x , y ) − − > ( X , Y , w ) : w = 1 , X = x , Y = y (X,Y,w)-->(x,y) :x=\frac{X}w, y=\frac{Y}w \\ (x,y)-->(X,Y,w) : w=1,X=x,Y=y (X,Y,w)>(x,y):x=wX,y=wY(x,y)>(X,Y,w):w=1,X=x,Y=y

齐次坐标的意义

无穷远处的点在欧氏空间中无法具体展示。
在投影空间中,平行线会在无穷远处相遇,但在欧氏空间中却做不到。
因此此处引入齐次坐标。

(上图参考:知乎:齐次坐标ikuku回答

任何N维度齐次坐标,只要W不为0,都可以通过将每一个分量除以W来转换到 W=1的向量, 然后获得其N-1维的欧式空间的点值。

而当W=0时,这个坐标表示无限长的一个向量,通常表示N-1维的矢量。

(这里我有一点没有明白,我懂得w=0表示无穷远处一个点,但是为什么向量可以用w=0表示没有想明白)

Change of Coordinate Systems

坐标系的转化

三维坐标系

在这里插入图片描述其中a是w在第一个坐标系(v1,v2,v3)中的representation,b是w在(u1,u2,u3)中的representation。
在这里插入图片描述在这里插入图片描述

齐次坐标系

在这里插入图片描述在这里插入图片描述在这里插入图片描述

Summary

新坐标系返回旧坐标系:
[ x y z 1 ] = [ X 1 ′ Y 1 ′ Z 1 ′ Q 0 x X 2 ′ Y 2 ′ Z 2 ′ Q 0 y X 3 ′ Y 3 ′ Z 3 ′ Q 0 z 0 0 0 1 ] [ x ′ y ′ z ′ 1 ] \begin{bmatrix} x \\ y \\ z \\ 1\\ \end{bmatrix}= \begin{bmatrix} X'_1 &Y'_1& Z'_1& Q_{0x} \\ X'_2 &Y'_2 &Z'_2 & Q_{0y} \\ X'_3 & Y'_3 & Z'_3 & Q_{0z} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} x' \\ y' \\ z' \\ 1\\ \end{bmatrix} xyz1=X1X2X30Y1Y2Y30Z1Z2Z30Q0xQ0yQ0z1xyz1

Affine Transformations

(1)每个线性变换都等价于坐标系中的变化
指坐标系中的几何体、点、向量的变换,都可以看作是坐标系的转动
(2)每个仿射变换都保留直线
(这里没有懂)
(3)然而,一个仿射变换只有12个自由度,因为矩阵中的4个元素是固定的,并且是所有可能的4x4线性变换的子集

The World and Camera Frames

Moving the Camera
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值