Pytorch:上采样、下采样

  缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1、使得图像符合显示区域的大小;2、生成对应图像的缩略图。

 放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。对图像的缩放操作并不能带来更多关于该图像的信息, 因此图像的质量将不可避免地受到影响。然而,确实有一些缩放方法能够增加图像的信息,从而使得缩放后的图像质量超过原图质量的。

 

      下采样原理:对于一幅图像I尺寸为M*N,对其进行s倍下采样,即得到(M/s)*(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值:使用池化 pooling(池化 / 降采样) 的技术下采样,目的就是用来降低特征的维度并保留有效信息,一定程度上避免过拟合。但是池化的目的不仅仅是这些,还有保持旋转、平移、伸缩不变形等。现在比较常见的下采样算法有:farthest point sampling(PointNet++,ShellNet)、random sampling(RandLA-Net)、grid sampling(KPConv,Grid-GCN)等。它们各有特点:

  • farthest point sampling(FPS):采样点分布均匀,时间复杂度高
  • grid sampling(GS):采样点分布较为均匀,时间复杂度一般,采样点个数具有不确定性
  • random sampling(RS):采样点分布具有随机性,时间复杂度低

 

     上采样原理:图像放大几乎都是采用内插值方法,即在原有图像像素的基础上在像素点之间采用合适的插值算法插入新的元素。在算法中常见的上采样方法有双线性插值以及转置卷积、上采样(unsampling)和上池化(unpooling)。常用的就是双线性插值以及转置卷积。

 

无论缩放图像(下采样)还是放大图像(上采样),采样方式有很多种。如最近邻插值,双线性插值,均值插值,中值插值等方法。在AlexNet中就使用了较合适的插值方法。各种插值方法都有各自的优缺点。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在PyTorch中,时间序列下采样函数可以使用torch.utils.data.Dataset和torch.utils.data.DataLoader来实现。首先,我们需要创建一个自定义的数据集类,该类用于加载时间序列数据集并对其进行下采样。 下采样是指将高频率的时间序列数据降低到低频率的数据。例如,将每秒钟的数据降低为每分钟的数据。下面是一个示例,说明如何实现时间序列下采样函数: ```python import torch from torch.utils.data import Dataset, DataLoader class TimeSeriesDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] # 创建一个包含时间序列数据的列表 time_series_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # 创建一个自定义的数据集 dataset = TimeSeriesDataset(time_series_data) # 定义下采样函数 def downsample_fn(data): downsampled_data = [] for i in range(0, len(data), 2): # 下采样步长为2 downsampled_data.append(torch.mean(torch.stack(data[i:i+2]))) return downsampled_data # 创建数据加载器,并对数据进行下采样 dataloader = DataLoader(dataset, batch_size=1) for batch in dataloader: downsampled_batch = downsample_fn(batch) print(downsampled_batch) ``` 在上述示例中,我们首先定义了一个`TimeSeriesDataset`类,用于加载时间序列数据。然后,我们定义了一个`downsample_fn`函数,该函数接受一个数据批次,将其进行下采样,然后返回下采样后的数据。接下来,我们创建了一个数据加载器,并在每个批次上应用上述的下采样函数。 上述示例中的`downsample_fn`函数是一个简单的示例。在实际应用中,你可能需要根据你的需求修改和调整该函数以实现更复杂的下采样策略。 ### 回答2: PyTorch是一个用于构建深度学习模型的开源机器学习库,它提供了许多可以在时间序列数据上执行下采样的函数。下采样是将时间序列数据从较高的频率降低到较低的频率,以减少数据的数量和复杂性。 在PyTorch中,可以使用torch.utils.data.Dataset和torch.utils.data.DataLoader来处理时间序列数据。torch.utils.data.Dataset用于加载和处理数据集,torch.utils.data.DataLoader用于将数据转换成小批量的形式以进行训练。 在时间序列数据下采样时,可以使用torch.nn.functional.avg_pool1d函数来执行平均池化操作。该函数将时间序列数据分割成固定长度的窗口,并计算每个窗口内元素的平均值作为下采样的结果。 下采样窗口的大小可以根据具体问题进行调整。 除了平均池化操作外,还可以使用其他下采样函数,如最大池化操作torch.nn.functional.max_pool1d来找到每个窗口内的最大值。根据问题的要求和数据的特点,选择合适的下采样函数可以提取时间序列数据中的重要信息并减少数据量。 在使用上述函数时,可以根据数据的维度和需要进行适当的调整。需要注意的是,下采样操作会丢失一部分细节信息,因此在选择下采样策略时需要权衡数据量和信息损失之间的关系。 总之,PyTorch提供了多种下采样函数来处理时间序列数据。根据具体问题的要求,可以选择适当的下采样函数和下采样窗口大小来降低数据的复杂性和数量。 ### 回答3: 在PyTorch中,时间序列下采样函数通常使用torch.nn.MaxPool1d或torch.nn.AvgPool1d来实现。这些函数主要用于降低时间序列数据的维度,并且可以选择不同的池化核大小和步幅来控制下采样的程度。 torch.nn.MaxPool1d函数通过在每个池化窗口中选择最大值来进行下采样。这对于保留重要的时间序列特征很有用。例如,如果我们有一个长度为10的时间序列,我们可以选择使用池化核大小为2和步幅为2,这样输出的时间序列长度变为5。每个池化窗口中的最大值将被选择,其余的值将被忽略。 torch.nn.AvgPool1d函数通过在每个池化窗口中计算平均值来进行下采样。这对于平滑时间序列数据很有用,以减少噪音的影响。与MaxPool1d函数类似,可以通过选择不同的池化核大小和步幅来控制下采样的程度。 除了MaxPool1d和AvgPool1d函数外,还可以使用其他一些函数来实现时间序列下采样。例如,可以使用torch.nn.Conv1d函数来应用卷积操作,并通过调整卷积核大小和步幅来实现下采样。 总之,在PyTorch中,时间序列下采样函数可以根据具体需求选择合适的池化函数和参数,以降低时间序列数据的维度,并且提取出关键的时间序列特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值