相关性和显著性分析

 

相关分析用于研究定量数据之间的关系情况,包括是否有关系,以及关系紧密程度等。

1、如果呈现出显著性(结果右上角有*号,此时说明有关系;反之则没有关系);有了关系之后,关系的紧密程度直接看相关系数大小即可。一般0.7以上说明关系非常紧密;0.4~0.7之间说明关系紧密;0.2~0.4说明关系一般。

2、如果说相关系数值小于0.2,但是依然呈现出显著性(右上角有*号,1个*号叫0.05水平显著,2个*号叫0.01水平显著;显著是指相关系数的出现具有统计学意义普遍存在的,而不是偶然出现),说明关系较弱,但依然是有相关关系。

3、相关分析是回归分析的前提条件,首先需要保证有相关关系,接着才能进行回归影响关系研究。

4、因为如果都显示没有相关关系,是不可能有影响关系的。如果有相关关系,但也不一定会出现回归影响关系。


 

相关分析的操作步骤

1. SPSSAU用户可自由拖拽分析项进入分析列表框,区别仅在于输出格式不同。

2. 相关分析使用相关系数表示分析项之间的关系;首先判断是否有关系(有*号则表示有关系,否则表示无关系);

3. 接着判断关系为正相关或者负相关(相关系数大于0为正相关,反之为负相关);

4. 最后判断关系紧密程度(通常相关系数大于0.4则表示关系紧密);

5. 相关系数常见有两类,分别是Pearson和Spearman,本系统默认使用Pearson相关系数。在相关分析之前,SPSSAU建议可使用散点图直观查看数据之间的关系情况。除此之外,SPSSAU还提供Kendall相关系数。三个相关系数的区别如下表格:


 

案例分析

1、背景

比如想研究“淘宝客服服务态度”,“淘宝商家服务质量”分别与“淘宝商家满意度”,“淘宝忠诚度”之间的关系情况,此句话中明显的可以看出“淘宝客服服务态度”,“淘宝商家服务质量”这两项为 X;而“淘宝商家满意度”,“淘宝忠诚度”这两项为 Y

2、操作

本处区分了X和Y,所以对应放入即可。如果并不区分X或者Y,此时直接把所有项放入“分析项Y(定量)”框中即可。

图片来源:SPSSAU官方帮助手册

3、SPSSAU输出结果

图片来源:SPSSAU分析结果页面

图片来源:SPSSAU分析结果页面

4、文字分析

上表使用相关分析去研究“淘宝商家满意度”,“淘宝忠诚度”分别与“淘宝客服服务态度”,“淘宝商家服务质量”之间的相关关系情况,并且使用Pearson相关系数去表示相关关系情况。从上表可以看到:

“淘宝商家满意度”分别与“淘宝客服服务态度”,“淘宝商家服务质量”之间均呈现出显著性(P <0.01),并且相关系数值均高于0.7,说明“淘宝商家满意度”分别与“淘宝客服服务态度”,“淘宝商家服务质量”之间均有着非常紧密的正向相关关系。类似的,“淘宝忠诚度”分别与“淘宝客服服务态度”,“淘宝商家服务质量”之间也会有着非常紧密的正相关关系,相关系数值分别是0.673和0.606。

5、剖析

相关分析仅仅是研究有没有关系与否,如果从常理上应该有关系,那么相关系数总会呈现出显著性。通常来说,相关分析之后还需要接着研究影响关系,使用回归分析方法。

补充资料参考

SPSSAU-SPSS相关分析帮助手册

SPSSAU-SPSS回归分析帮助手册

SPSSAU-相关分析/回归分析区别联系

作者:SPSSAU
链接:https://www.zhihu.com/question/22114982/answer/583955025
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

### 如何使用Python进行相关性分析显著性检验 #### 使用散点图初步评估变量间的关系 在执行正式的相关性检验之前,建议先绘制散点图以直观了解两个变量间的潜在关系。这有助于判断是否适合应用特定类型的关联度量方法[^3]。 ```python import matplotlib.pyplot as plt plt.scatter(x, y) plt.xlabel('Variable X') plt.ylabel('Variable Y') plt.title('Scatter plot of X vs Y') plt.show() ``` #### Pearson相关系数及其显著性测试 对于呈现线性同方差特性的数据集,Pearson相关系数是最常用的衡量标准之一。SciPy库提供了`pearsonr()`函数用于计算该指标并返回对应的P值: ```python from scipy import stats corr_coef, p_value = stats.pearsonr(x, y) if p_value < 0.05: print(f"Pearson correlation coefficient: {corr_coef:.4f}, P-value: {p_value:.4f}") else: print("The linear relationship between x and y is not statistically significant.") ``` 当样本不符合正态分布或存在异方差情况时,应考虑采用Spearman等级相关或其他非参数化的方法替代Pearson法。 #### Spearman秩相关系数 适用于连续型但不一定服从正态分布的数据,或是离散有序分类资料。同样地,可以通过调用`scipy.stats.spearmanr()`完成操作: ```python rho, spear_pval = stats.spearmanr(x, y) if spear_pval < 0.05: print(f"Spearman rank correlation coefficient: {rho:.4f}, P-value: {spear_pval:.4f}") else: print("No significant monotonic relation found between the variables.") ``` #### Kendall's Tau-b 关系强度测量 这是一种更为稳健的选择,在面对少量异常值的情况下表现良好。实现方式如下所示: ```python tau, kendall_pval = stats.kendalltau(x, y) if kendall_pval < 0.05: print(f"Kendall’s tau-b : {tau:.4f}, P-value: {kendall_pval:.4f}") else: print("There isn't a strong enough evidence to claim any association exists.") ``` 以上三种方法均能有效帮助研究者理解不同特征之间的联系程度以及这种联系背后所蕴含的概率意义。具体选用哪种取决于实际应用场景中的假设条件需求特点[^1].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值