参考:
YOLO官网: https://pjreddie.com/darknet/yolo/
OpenCV官方文档: https://docs.opencv.org/3.4.5/da/d9d/tutorial_dnn_yolo.html
大佬博客: https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
大佬代码: https://github.com/spmallick/learnopencv/blob/master/ObjectDetection-YOLO/object_detection_yolo.cpp
前期准备
本人用的是VS2015+OpenCV3.4.5(版本太低的话无法支持yolo3)
YOLO3模型下载:
1.(yolov3.weights)权重文件:https://pjreddie.com/media/files/yolov3.weights
2.(yolov3.cfg)配置文件:https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
3.(coco.names)对象名称文件:https://github.com/pjreddie/darknet/blob/master/data/coco.names
**提供我的百度云打包下载(* ̄︶ ̄):链接:https://pan.baidu.com/s/1S--B32JVWJEKVb7L97mtJA 提取码:1r04
把3个模型文件放到项目文件中,之后程序通过路径调用。
(本人是在项目文件中新建了一个yolo3的文件,因此在程序中调用时记得修改路径)
顺便把检测对象(图片或视频)也放到同一个路径里面。
处理步骤
(这部分主要是参考翻译自大佬的文章,如果只是想跑程序,不想了解过程,可以直接跳过这一节)
1.初始化参数
YOLOv3算法生成边界框作为预测的检测输出,每个预测框都与置信度得分相关。主要涉及以下几个参数:
(1)置信阈值参数(confThreshold):首先,将忽略置信阈值参数下的所有框以进行进一步处理,置信得分在该阈值以下的识别对象会被去除掉;
(2)非最大抑制参数(nmsThreshold):之后,剩下的框将进行非最大抑制,以删除多余的重叠边界框。该参数如果太低的话会检测不到有重叠的对象,参数太高可能会出现同一个对象有几个重复的框;
(3)宽度(inpWidth)和高度(inpHeight):接下来,设置网络输入图像的输入宽度和高度的默认值。将它们中的每一个设置为416,这样就可以将我们的运行与Yolov3的作者给出的Darknet的C代码进行比较。(还可以将这两个选项都更改为320以获得更快的结果,或者更改为608以获得更准确的结果)
// Initialize the parameters
floatconfThreshold = 0.5;// Confidence threshold
floatnmsThreshold = 0.4;// Non-maximum suppression threshold
intinpWidth = 416;// Width of network's input image
intinpHeight = 416;// Height of network's input image
2.导入模型和类
之前我们准备的YOLO3模型3个文件在这里导入,包括:(coco.names)对象名称文件,(yolov3.weights)权重文件,(yolov3.cfg)配置文件。(记得修改路径)
这里将DNN后端设置为OpenCV,目标为CPU。这里可以尝试将首选目标设置为cv.dnn.dnn_target_opencl
以在GPU上运行。但是,当前的opencv版本只能在英特尔的GPU上测试,如果没有英特尔的GPU,它会自动切换到CPU。
// Load names of classes
string classesFile = "coco.names";
ifstream ifs(classesFile.c_str());
string line;
while(getline(ifs, line)) classes.push_back(line);
// Give the configuration and weight files for the model
String modelConfiguration = "yolov3.cfg";
String modelWeights = "yolov3.weights";
// Load the network
Net net = readNetFromDarknet(modelConfiguration, modelWeights);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setPreferableTarget(DNN_TARGET_CPU);
3.读取输入
这一步就是OpenCV的常规操作,可以读取图片、视频或者是摄像头,另外就是还可以设置一个输出来保存我们检测的效果。
if (parser.has("image"))
{
// Open the image file
str = parser.get<String>("image");
ifstream ifile(str);
if (!ifile) throw("error");
cap.open(str);
str.replace(str.end()-4, str.end(), "_yolo_out.jpg");
outputFile = str;
}
else if (parser.has("video"))
{
// Open the video file
str = parser.get<String>("video");
ifstream ifile(str);
if (!ifile) throw("error");
cap.open(str);
str.replace(str.end()-4, str.end(), "_yolo_out.avi");
outputFile = str;
}
// Open the webcaom
else cap.open(parser.get<int>("device"));
4.处理每一帧图像
神经网络的输入图像需要采用一种称为blob的特定格式。
从输入图像或视频流中读取帧后,将通过blobFromImage函数将其转换为神经网络的输入blob。 在此过程中,它使用比例因子1/255将图像像素值缩放到0到1的目标范围。 它还将图像的大小调整为给定大小(416,416)而不进行裁剪。
(PS:我们不在此处执行任何均值减法,因此将[0,0,0]传递给函数的mean参数,并将swapRB参数保持为其默认值1。)
之后输出blob作为输入传递到网络,并运行正向传递以获得预测边界框列表作为网络输出。 这些框经过后处理步骤,滤除了低置信度分数。 这里在图像左上角打印出每帧的推理时间, 然后将检测图像输出。
// Process frames.
while (waitKey(1) < 0)
{
// get frame from the video
cap >> frame;
// Stop the program if reached end of video
if (frame.empty()) {
cout << "Done processing !!!" << endl;
cout << "Output file is stored as " << outputFile << endl;
waitKey(3000);
break;
}
// Create a 4D blob from a frame.
blobFromImage(frame, blob, 1/255.0, cvSize(inpWidth, inpHeight), Scalar(0,0,0), true, false);
//Sets the input to the network
net.setInput(blob);
// Runs the forward pass to get output of the output layers
vector<Mat> outs;
net.forward(outs, getOutputsNames(net));
// Remove the bounding boxes with low confidence
postprocess(frame, outs);
// Put efficiency information. The function getPerfProfile returns the
// overall time for inference(t) and the timings for each of the layers(in layersTimes)
vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
string label = format("Inference time for a frame : %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));
// Write the frame with the detection boxes
Mat detectedFrame