代码所使用的网络结构图:
1.数据集下载
#datesets.py(名称)
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
2.数据集查看
#show_.py(名称)
import torchvision
import matplotlib.pyplot as plt
import numpy as np
from datasets import trainloader, classes, batch_size
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
if __name__ == "__main__":
dataiter = iter(trainloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))
3.模型的主干网络
#model.py(名称)
import torch.nn as nn
import torch.nn.functional as F
import torch
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
4.模型的训练部分
#train.py(名称)
import torch
import torch.nn as nn
from datasets import trainloader
from model import net
import torch.optim as optim
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
5.预测模块
#prediction.py(名称)
import torch
import torchvision
from show_ import imshow
from datasets import testloader, classes
from model import net
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))
PATH = './cifar_net.pth'
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
for j in range(4)))
# correct = 0
# total = 0
# with torch.no_grad():
# for data in testloader:
# images, labels = data
# outputs = net(images)
# _, predicted = torch.max(outputs.data, 1)
# total += labels.size(0)
# correct += (predicted == labels).sum().item()
# print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
# correct_pred = {classname: 0 for classname in classes}
# total_pred = {classname: 0 for classname in classes}
# with torch.no_grad():
# for data in testloader:
# images, labels = data
# outputs = net(images)
# _, predictions = torch.max(outputs, 1)
# for label, prediction in zip(labels, predictions):
# if label == prediction:
# correct_pred[classes[label]] += 1
# total_pred[classes[label]] += 1
# for classname, correct_count in correct_pred.items():
# accuracy = 100 * float(correct_count) / total_pred[classname]
# print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')