SSD-Pytorch训练和测试自己的数据集(新手必看)

本文详细介绍了如何使用SSD-Pytorch在PyTorch环境中训练和测试自定义数据集,包括数据集转换、环境安装、代码修改、问题解决及成果展示。涉及关键步骤如修改config.py、VOC0712.py、train.py、eval.py和ssd.py。在训练过程中,作者遇到了loss为nan的问题,并提供了降低学习率的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.准备自己的数据集

2.pytorch环境安装即SSD-pytorch代码下载

3.正常的修改

        修改1:config.py

        修改2:VOC0712.py

        修改3:train.py

        修改4:eval.py

        修改5:ssd.py

4.遇到的问题和相应的解决办法

        问题1:

       问题2:提示自动跳出迭代

         问题3:训练是loss出现抑制为nan的情况

5.成果展示


1.准备自己的数据集

        pytorch-ssd可以支持VOC和COCO两种数据格式,所以你要将自己的数据集转化为VOC格式或者COCO格式,相应的转化脚本,请点击(注:SSD-Pytorch中含有自动下载VOC和COCO官方数据的脚本)如下图

2.pytorch环境安装即SSD-pytorch代码下载

        点击链接登陆pytorch官网根据电脑的操作系统配置选择安装:   PyTorch

        python版本要求python3 + :Welcome to Python.org

        SSD-Pytorch代码链接:GitHub - amdegroot/ssd.pytorch: A PyTorch Implementation of Single Shot MultiBox Detector

        训练模型下载链接(官方模型链接似乎失效了,推荐下载):https://download.csdn.net/download/qq_34374211/10712378

3.正常的修改

        根据经验,我们要清楚自己数据集的含有的类别,例如:我自己的数据集为VOC格式,含有8个类别。

        修改1:config.py

<
评论 341
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值