MIT算法导论-第二讲-渐进符号,递归及解法

1.渐进符号

  1. Θ符号,f(n) = Θ(g(n)),表示f(n)的复杂度既大于等于*g(n)的复杂度,又小于等于g(n)的复杂度,即于g(n)的复杂度相当*
  2. O符号,f(n) = O(g(n)),表示f(n)的复杂度最多与g(n)一个数量级,即小于等于
  3. Ω符号,f(n) = Ω(g(n)),f(n)的复杂度最少与g(n)一个数量级,即大于等于
    这里写图片描述

  4. o符号,f(n) = o(g(n)),表示f(n)的复杂度要比g(n)的数量级小,即小于
    例如2n = o(n^2) ,但是2n^2 != o(n^2)

  5. ω符号,f(n) = ω(g(n)),表示f(n)的复杂度要比g(n)的数量级大,即大于

2.递归式

算法设计中经常会用到递归,利用递归式的方法可以清晰地显示算法的整个过程,而对于分析算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值