1.渐进符号
- Θ符号,f(n) = Θ(g(n)),表示f(n)的复杂度既大于等于*g(n)的复杂度,又小于等于g(n)的复杂度,即于g(n)的复杂度相当*。
- O符号,f(n) = O(g(n)),表示f(n)的复杂度最多与g(n)一个数量级,即小于等于。
Ω符号,f(n) = Ω(g(n)),f(n)的复杂度最少与g(n)一个数量级,即大于等于。
o符号,f(n) = o(g(n)),表示f(n)的复杂度要比g(n)的数量级小,即小于。
例如2n = o(n^2) ,但是2n^2 != o(n^2)- ω符号,f(n) = ω(g(n)),表示f(n)的复杂度要比g(n)的数量级大,即大于。
2.递归式
算法设计中经常会用到递归,利用递归式的方法可以清晰地显示算法的整个过程,而对于分析算法