定义(割点) 如果在G中去掉v及其关联的边,剩下的图就不再连通,连通无向图G中的顶点v称为割点。
图:左图无割点,右图C、F、G都是割点
定义(深索数) 当采用深度优先遍历算法时,顶点v被访问的序数称为v的深索数,记做DFN(v)。
定义(最低深索数) 顶点u 的最低深索数L(u)定义为
L(u) = min{ DFN(u), min{ DFN(x) | (u,x)是T的余边 }, min{ L(w) | w是u的子节点 } }
结论 1.(根节点)树T的根是图G的割点——当且仅当其在T中至少有两个子节点;
2.(非根节点)如果u不是深度优先搜索树的根,则u是图G的割点——当且仅当u有某个子节点w,w的最低深索数不小于u的深索数,即 L(w)≥DFN(u)。
该结论描述为计算机语言。亦即,