连通图求割点 最低深索数L(w) & 深索数DFN(u)

本文介绍了连通图中的割点概念,即移除某顶点及关联边后导致图不连通的顶点。深度优先遍历中,顶点的深索数(DFN)表示访问顺序,最低深索数(L)则涉及割点的判断。割点特征是存在子节点的最低深索数不小于其自身的深索数。通过深索数的分析,可以有效地识别图中的割点。
摘要由CSDN通过智能技术生成

定义(割点) 如果在G中去掉v及其关联的边,剩下的图就不再连通,连通无向图G中的顶点v称为割点。

图:左图无割点,右图C、F、G都是割点

定义(深索数) 当采用深度优先遍历算法时,顶点v被访问的序数称为v的深索数,记做DFN(v)。

定义(最低深索数) 顶点u 的最低深索数L(u)定义为

L(u) = min{ DFN(u),  min{ DFN(x) | (u,x)是T的余边 }, min{ L(w) | w是u的子节点 } }
结论 1.(根节点)树T的根是图G的割点——当且仅当其在T中至少有两个子节点;
2.(非根节点)如果u不是深度优先搜索树的根,则u是图G的割点——当且仅当u有某个子节点w,w的最低深索数不小于u的深索数,即 L(w)≥DFN(u)。
该结论描述为计算机语言。亦即,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值