什么BRIEF算法?BRIEF算法详解

BRIEF是一种快速且有效的图像特征描述子算法,通过随机选取点对并进行二值比较生成描述向量。其步骤包括图像滤波、随机点对选取以及构建二进制描述符。BRIEF的优势在于低成本的计算和存储需求,以及使用汉明距离进行匹配。算法中选取点对的方式影响着描述子的质量,其中Gauss分布采样的方法表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  BRIEF是一种特征描述子提取算法,并非特征点的提取算法,一种生成二值化描述子的算法,不提取代价低,匹配只需要使用简单的汉明距离(Hamming Distance)利用比特之间的异或操作就可以完成。因此,时间代价低,空间代价低,效果还挺好是最大的优点。

  算法的步骤介绍如下:

  1. 图像滤波:原始图像中存在噪声时,会对结果产生影响,所以需要对图像进行滤波,去除部分噪声。

  2. 选取点对:以特征点为中心,取S*S的邻域窗口,在窗口内随机选取N组点对,一般N=128,256,512,默认是256,关于如何选取随机点对,提供了五种形式,结果如下图所示:

  ·x,y方向平均分布采样

  ·x,y均服从Gauss(0,S^2/25)各向同性采样

  ·x服从Gauss(0,S^2/25),y服从Gauss(0,S^2/100)采样

  ·x,y从网格中随机获取

  ·x一直在(0,0),y从网格中随机选取

1

  图中一条线段的两个端点就是一组点对,其中第二种方法的结果比较好。

  3. 构建描述符:假设x,y是某个点对的两个端点,p(x),p(y)是两点对应的像素值,则有:

2

  对每一个点对都进行上述的二进制赋值,形成BRIEF的关键点的描述特征向量,该向量一般为 128-512 位的字符串,其中仅包含 1 和 0,如下图所示:

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值