随着 ChatGPT 等大语言模型(LLM)的不断发展,越来越多的研究人员开始关注语言模型的应用。
其中,检索增强生成(Retrieval-augmented generation,RAG)是一种针对知识密集型 NLP 任务的生成方法,它通过在生成过程中引入检索组件,从已知的知识库中检索相关信息,并将这些信息与 LLM 的生成能力结合,从而提高生成的准确性和可靠性。这种方法可以用于实现各种知识密集型 NLP 任务,如问答、文摘生成、语义推理等。
本文将从解决优化 RAG 系统里的一个具体问题出发,通过展示使用 LLM Prompt Engineering 的方法,来解析传统 NLP 的问题。
01.
解决方案初探
开源项目 Akcio(https://github.com/zc277584121/akcio) 就是一套完整的 RAG 问答系统,用户导入各类私有专业知识,就可以构建专业领域的问答系统。
|Akcio 的架构图。专业知识是各类 Documents,通过 DataLoader 导入进 Store。在每次提问 Question 后,LLM 可以结合召回知识,加上 LLM 自身的自然语言生成能力,给出对应的回答。