深度学习调参指南

文章讨论了如何选择合适的深度学习模型架构,从现成的有效模型开始。其次,强调了优化器在解决问题中的作用,建议针对问题性质比较不同优化器。接着,提到了BatchSize对训练速度的影响,指出最大化支持的BatchSize可以减少训练时间,但资源消耗需考虑。最后,指出适当调整超参数和训练步数,任何BatchSize都能达到相同最终性能。
摘要由CSDN通过智能技术生成
1. 选择合适的模型架构

模型的结构(层数和宽度),参数配置,尽量用已经有效的模型

2. 选择优化器

针对具体的问题,从选择常用的优化器开始,进行比较

3. 选择BatchSize

1). Batch Size决定训练速度,但是不影响验证集性能

2). 通常选择最大可支持的Bacth Size

3). 增加Batch Size减少训练时间,但是资源消耗不一定变化

4). 任意Batch Size都可以得到相同的最终性能(当超参数调整好并训练步数足够)

4. 调整的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值