速度快、好用,准确率高的在线检查错别字校对工具有哪些?

什么软件可以校对错别字?很多从事材料撰写,内容写作、文案工作的朋友经常会因为文章内容中出现错别字而造成不好的影响。

为了帮助大家在以后的工作经历中避免这种问题产生,一款网页在线就能直接使用,不需要麻烦的下载软件,可自动检查错别字的SaaS工具,可以解决问题。

博特智能-智能内容处理平台(BotSmart-ICPS)
博特智能-智能内容处理平台https://pgc.botsmart.cn/#/login

可以实现错别字检测校对、专业内容审核、公文辅助写作、智能改写润色。

审核效果功能包含:

内容审核功能:文本稿件错别字、语法、语义的检查检测审核、敏感信息审核、科技名词审核、图片,视频违规检测;在线写作功能:改写润色、公文辅助创作、智能排版、公文格式检测、AI语音校读、中英互译等;内容监测清洗:(网页、APP、新媒体)内容监测、舆情热点监测、违规内容清洗等内容创作等。

行政机关、企业和个人用户均可按需求分别调用不同功能来满足使用。没有试用期限限制。

适用行业场景:

1.行政机关:日常公文、学习材料、通知汇报文件、外宣稿件

2.事业单位:新闻稿件、外宣内容

3.科研院校:教辅材料、学术论文

4.新闻媒体:批量新闻稿件

5.出版行业:公开出版物、文献资料

6.融媒体中心:复合媒体稿件审核、影音资料

7.国企央企:智慧党建、品宣新闻、通知公告、内部文件

8.上市集团:品宣新闻、通知公告

9.金融行业:资讯公告、财报

10.律师行业:审计报告、常用法律文书、各类合同

一篇10000字的文稿,人工正常阅读时间至少需要30分钟,完成错别字检测,审核校对正常需要40-60分钟,而一篇50000字的文件完成校对则需要花费1-2个小时。在一些对内容严谨性有极其严苛审核要求的行业场景,面对批量文稿内容,需要的审核时间与精力会更多,人工工作时间越长,越疲劳,内容风险外溢的概率就会变得更大。

一篇10000字的图文稿件,对于智能内容处理平台(BotSmart-ICPS)而言,只需15秒就能完成快速审核。并一次性将所有错别字、错误标点符号、错误语义表述、疑似违规、疑似意识形态错误等问题检测出来,对常识性的敏感信息、重要姓名、职务等关键内容也能给出准确的修改提醒,与人工相比,审核工作效率提升了160倍,准确率99%,配合人声朗读进行二次校对,可以发现更多语义问题,准确率更高。

### 错别字识别模型种类及应用 #### 基于规则的方法 早期的错别字检测依赖于基于规则的语言模型。这种方法通过定义一系列语法规则和语言特征来辅助识别和纠正错误。尽管这类方法对于结构化的语言处理非常有效,但在面对自然语言的变化性和复杂性时显得不够灵活[^2]。 #### 统计模型 统计模型利用大规模文本数据集进行训练,能够捕捉到词语之间的概率分布特性。这些模型通常会计算给定上下文中某个单词出现的概率,并据此判断是否存在拼写或语法上的错误。然而,传统统计模型往往需要大量的标注数据来进行有效的参数估计,在资源有限的情况下效果不佳。 #### 深度学习模型 近年来,随着深度学习技术的发展,出现了许多效的错别字识别方案: - **字符级循环神经网络 (RNN)**:可以直接作用于原始输入序列而不需要额外的手工设计特征工程;通过对相邻字符间的关系建模提准确性。 - **双向长短时记忆网络(BiLSTM)+条件随机场(CRF)**:BiLSTM可以从前后两个方向获取更丰富的上下文信息,CRF层有助于解决标签偏移问题并增强整体性能。 - **Transformer架构下的预训练语言模型**:如BERT及其变体,由于其强大的自监督学习机制,能够在未见过的数据上表现出良好的泛化能力和涌现现象,即产生一些意想不到的新功能[^1][^3]。例如,经过适当调整后的BERT可用于执行多种NLP子任务,包括但不限于错别字校正。 ```python from transformers import BertTokenizer, BertForMaskedLM import torch tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForMaskedLM.from_pretrained('bert-base-chinese') def correct_spelling(text): inputs = tokenizer.encode_plus( text, return_tensors="pt", max_length=512, truncation=True ) mask_token_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1] with torch.no_grad(): outputs = model(**inputs) top_k_predictions = torch.topk(outputs.logits[mask_token_index], k=5).indices.squeeze().tolist() corrected_word = None for pred_idx in top_k_predictions: predicted_token = tokenizer.decode([pred_idx]) if predicted_token != '[UNK]' and not any(char.isdigit() or char.isalpha() for char in predicted_token.strip()): corrected_word = predicted_token break return f"{text[:mask_token_index]}{corrected_word}{text[mask_token_index+1:]}" if corrected_word else "无法找到合适的替换" print(correct_spelling("我喜欢吃苹[MASK].")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值