Prophet时间序列预测——python和R语言实现

一、Prophet概述

Prophet是一种基于可加性模型预测时间序列数据的程序,其中非线性趋势可以按年度、每周和每日的季节性,以及假日效应进行拟合。它最适合于具有强烈季节效应的时间序列和有几个季节的历史数据。Prophet对于缺失的数据和趋势的变化是稳健的,并且通常能够很好地处理异常值。

模型原理:
Prophet模型如下:
在这里插入图片描述
g(t) 表示趋势函数,拟合非周期性变化;
s(s)表示周期性变化,比如说每周,每年,季节等;
h(t)表示假期变化,节假日可能是一天或者多天;
ϵt为噪声项,用他来表示随机无法预测的波动,我们假设ϵt是高斯的。

  1. 趋势中有两个增长函数,分别是分段线性函数(linear)和非线性逻辑回归函数(logistic)拟合增长曲线趋势。通过从数据中选择变化点,Prophet自动探测趋势变化;
  2. 使用傅里叶级数建模每年的季节分量;
  3. 使用虚变量代表过去,将来的相同节假日,属于节假日就为1,不属于就是0;
  4. 用户提供的重要节假日列表

prophet的预测过程:

  1. Modeling:建立时间序列模型。分析师根据预测问题的背景选择一个合适的模型。
  2. Forecast Evaluation:模型评估。根据模型对历史数据进行仿真,在模型的参数不确定的情况下,我们可以进行多种尝试,并根 据对应的仿真效果评估哪种模型更适合。
  3. Surface Problems:呈现问题。如果尝试了多种参数后,模型的整体表现依然不理想,这个时候可以将误差较大的潜在原因呈现给分析师。
  4. Visually Inspect Forecasts:以可视化的方式反馈整个预测结果。当问题反馈给分析师后,分析师考虑是否进一步调整和构建模型。

Prophet适用场景:

  1. 有至少几个月(最好是一年)的每小时、每天或每周观察的历史数据;
  2. 有多种人类规模级别的较强的季节性趋势:每周的一些天和每年的一些时间;
  3. 有事先知道的以不定期的间隔发生的重要节假日(比如国庆节);
  4. 缺失的历史数据或较大的异常数据的数量在合理范围内;
  5. 有历史趋势的变化(比如因为产品发布);
  6. 对于数据中蕴含的非线性增长的趋势都有一个自然极限或饱和状态。

传统的时间序列预测,适用的时序数据过于局限, 缺失值需要处理,模型缺乏灵活性,指导作用较弱;

Prophet优点:

  • 准确,快速,拟合非常快,可以进行交互式探索
  • 全自动,无需人工操作就能对混乱的数据做出合理的预测
  • 可调整的预测,预测模型的参数非常容易解释,可以用业务知识改进或调整预测
  • 对缺失值和变化剧烈的时间序列和离散值能做很好有很好的鲁棒性,不需要填补缺失值;

二、Prophet安装

在anaconda中安装prophet模块,以管理员权限运行命令窗口,执行以下命令

conda install -c conda-forge fbprophet

中间可能会遇到需要暗转或者更新一些依赖模块,输入y回车就行,因为之前我运行的时候已经更新,但是不是管理员权限,所以安装失败,我重新以管理员运行命令,就安装成功了。
在这里插入图片描述

三、Prophet应用

R语言实现

mydata<-read.table("C:\\Users\\examples\\example_wp_log_peyton_manning.csv",header=TRUE,sep=",") 
head(mydata)
m <- prophet(mydata)
future <- make_future_dataframe(m,periods=365)    #####需要剩下的预测天数,如果预测的数据是月份加上参数freq='month'
#预测数据集
forecast <- predict(m,future)
plot(m, forecast)

在这里插入图片描述
可以画出预测的成分图

prophet_plot_components(m, forecast)

其中trend是增长模型的展示,weekly和yearly部分是季节性模型的展示

在这里插入图片描述

在这里插入图片描述

由于prophet是加法模型,有:
forecast[‘additive_terms’] = forecast[‘weekly’] + forecast[‘yearly’];
forecast[‘yhat’] = forecast[‘trend’] + forecast[‘additive_terms’] 。
因此:forecast[‘yhat’] = forecast[‘trend’] +forecast[‘weekly’] + forecast[‘yearly’]。
加上节假日因素:
forecast[‘yhat’] = forecast[‘trend’] +forecast[‘weekly’] + forecast[‘yearly’] + forecast[‘holidays’]。
‘multiplicative_terms’, ‘multiplicative_terms_lower’, 'multiplicative_terms_upper’这3列是乘法模型的因素,所以为空。

增加假期的影响
lower_window 和 upper_window 表示节假日的区间,其中包含前一天,就设置 lower_window = -1 , upper_window = 0 ,
表示包含后一天,就设置 lower_window = 0 , upper_window =1

playoffs <- data.frame(
  holiday = 'playoff',
  ds = c('2008-01-13', '2009-01-03', '2010-01-16',
         
         '2010-01-24', '2010-02-07', '2011-01-08',
         
         '2013-01-12', '2014-01-12', '2014-01-19',
         
         '2014-02-02', '2015-01-11', '2016-01-17',
         
         '2016-01-24', '2016-02-07'),
  lower_window = 0,
  upper_window = 1)
 m <- prophet(mydata,holidays =playoffs)
future <- make_future_dataframe(m,periods=365)    #####需要剩下的预测天数,如果预测的数据是月份加上参数freq='month'
#预测数据集
forecast <- predict(m,future)
prophet_plot_components(m, forecast) #成分图
plot(m, forecast)#预测图

在这里插入图片描述

python实现

import pandas as pd
from fbprophet import Prophet
#读取数据集
df=pd.read_csv('C:\\Users\\examples\\example_wp_log_peyton_manning.csv')
#拟合模型
m=Prophet()
m.fit(df)
#构建待预测日期数据框,periods=365 代表除历史数据的日期外再往后推365天
future=m.make_future_dataframe(periods=365) #包含历史数据,如果是月度数据make_future_dataframe(periods=9, freq='M')
#预测数据集
forecast=m.predict(future)
#展示预测结果
m.plot(forecast);
#预测的成分分析绘图,展示预测中的趋势、周效应和年度效应
m.plot_components(forecast);

增加节假日信息

playoffs=pd.DataFrame({
    'holiday':'playoff',
    'ds':pd.to_datetime(['2008-01-13', '2009-01-03', '2010-01-16',
         
         '2010-01-24', '2010-02-07', '2011-01-08',
         
         '2013-01-12', '2014-01-12', '2014-01-19',
         
         '2014-02-02', '2015-01-11', '2016-01-17',
         
         '2016-01-24', '2016-02-07']),
      'lower_window':0,
    'upper_window':1,})
superbowls=pd.DataFrame({
    'holiday':'superbowl',
    'ds':pd.to_datetime(['2010-02-07', '2014-02-02', '2016-02-07']),
    'lower_window':0,
    'upper_window':1,    
})
holidays=pd.concat((playoffs,superbowls))
m=Prophet(holidays=holidays)
m.fit(df)
future=m.make_future_dataframe(periods=365)
forecast=m.predict(future)
fig=m.plot_components(forecast)

在这里插入图片描述

四、关于参数调整

  1. 首先我们去除数据中的异常点(outlier),直接赋值为none就可以,因为Prophet的设计中可以通过插值处理缺失值,但是对异常值比较敏感。
  2. 选择趋势模型,默认使用分段线性的趋势,但是如果认为模型的趋势是按照log函数方式增长的,可设置growth='logistic’从而使用分段log的增长方式
  3. 设置趋势转折点(changepoint),如果我们知道时间序列的趋势会在某些位置发现转变,可以进行人工设置,比如某一天有新产品上线会影响我们的走势,我们可以将这个时刻设置为转折点。
  4. 设置周期性,模型默认是带有年和星期以及天的周期性,其他月、小时的周期性需要自己根据数据的特征进行设置,或者设置将年和星期等周期关闭。
  5. 设置节假日特征,如果我们的数据存在节假日的突增或者突降,我们可以设置holiday参数来进行调节,可以设置不同的holiday,例如五一一种,国庆一种,影响大小不一样,时间段也不一样。
  6. 此时可以简单的进行作图观察,然后可以根据经验继续调节上述模型参数,同时根据模型是否过拟合以及对什么成分过拟合,我们可以对应调节seasonality_prior_scale、holidays_prior_scale、changepoint_prior_scale参数。
  7. 如果预测结果的误差很大,考虑选取的模型是否准确,尝试调整增长率模型(growth)的参数,在必要的情况下也需要调整季节性(seasonality)参数。
  8. 如果在尝试的大多数方法中,某些日期的预测依然存在很大的误差,这就说明历史数据中存在异常值。最好的办法就是找到这些异常值并剔除掉。使用者无需像其他方法那样对剔除的数据进行插值拟合,可以仅保留异常值对应的时间, 并将异常值修改为空值(NA),模型在预测时依然可以给出这个时间点对应的预测结果。
  9. 如果对历史数据进行仿真预测时发现,从一个截点到下一个截点误差急剧的增加,这说明在两个截点期间数据的产生过程发生了较大的变化,此时两个截点之间应该增加一个”changepoint”,来对这期间的不同阶段分别建模。

参考资料:https://blog.csdn.net/qq_23860475/article/details/81354467
https://blog.csdn.net/anshuai_aw1/article/details/83412058

  • 1
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值