给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题是剑指offer上的原题,可以用找规律、动态规划、贪心算法等方法解决。刚开始看到剑指offer的动态规划题解时,我十分疑惑。
输入为绳长n,输出为最大乘积f(n)。
- 对于输入3>=n>=2,我们确定一些初始的情况,如n=2时,f(2)=1*1=1;n=3时,f(3)=1*2=2。在代码中,n<=3时直接返回n-1对应我们确定的初始情况。
- n>3时,使用dp数组记录每一步的最大乘积,首先初始化dp数组,注意,这里dp数组的dp[0]没有被使用到,dp[1],dp[2],dp[3]并不是对应前面的初始情况。比如n=4时,f(n)=max(dp[2]*dp[2],dp[1]*dp[3]),这里的dp[2]*dp[2]是绳子分割为2、2时的一个乘积结果,dp[1],dp[2],dp[3]是绳子分割得到的某一段为1,2,3时对乘积结果的一个贡献值,这里不要和初始情况f(2),f(3)搞混了,f(2),f(3)指的是绳子长度为2、3的返回结果。
- 对于n>3的情况,for循环从i=4~n,对每一个固定的i值计算绳长为i时的最大乘积,保存在dp数组中。这里j<=i/2是为了减少不必要的重复计算。
代码如下:
class Solution {
public int cuttingRope(int n) {
if(n<=3) return n-1;
int[] dp =new int[n+1];
dp[0]=0;dp[1]=1;dp[2]=2;dp[3]=3;
for(int i=4;i<=n;i++){
int max =0;
for(int j=1;j<=i/2;j++){
int p=dp[j]*dp[i-j];
if(p>max) max=p;
dp[i]=max;
}
}
return dp[n];
}
}