光影精灵5安装ubuntu 16.0.4后启动不成功的解决记录

新到一台光影精灵5,原装win10家庭版,分了100个G来做ubuntu,安装完发现开机直接进入win10了,各种方法都无法在开机时显示选择系统,只要退而求其次,开机启动时按F9来选择。

但是选择ubuntu系统的时候,提示选择的启动映像是尚未被验证过的.请按<Enter>键继续。进入BIOS设置,将启动设置的安全项设置成禁用,重启电脑里会提示风险无法进入系统,要求输入一个代码继续,按要求输入代码后回车,重启,再选择Ubuntu就可以进入系统了。

如果F9没有ubuntu的启动项显示,可以按下面的办法做:

1 不管使用什么方法(LiveCD 或者USB),进入Ubuntu试用模式,并且连接上互联网

2 输入命令:

sudo add-apt-repository ppa:yannubuntu/boot-repair
sudo apt-get update
sudo apt-get install -y boot-repair && boot-repair

3 点击【 Recommended repair 】

4 按照说明进行修复。

### 如何在 Ubuntu 16.04安装 TensorFlow-GPU #### 准备工作 确保已经正确安装了 NVIDIA 显卡驱动以及 CUDA 和 cuDNN 的相应版本。这些组件对于 TensorFlow-GPU 版本的支持至关重要[^5]。 #### 安装依赖库 为了使 TensorFlow 能够访问 GPU 性能统计信息,需先通过命令 `sudo apt-get install libcupti-dev` 来安装必要的支持包。 #### 使用 Pip 进行安装 可以通过 Python 的包管理工具 pip 来安装特定版本的 TensorFlow-GPU。例如: ```bash pip3 install --trusted-host pypi.org --trusted-host files.pythonhosted.org tensorflow-gpu==1.10.0 --user ``` 这条指令指定了信任的主机地址来绕过某些网络环境下的安全限制,并选择了具体的 TensorFlow-GPU 版本号进行安装。 另外,在其他资料中也提到了同的 TensorFlow-GPU 版本,比如可以使用如下命令安装较早版本: ```bash sudo pip install tensorflow-gpu==1.2.0 ``` 或者是稍新的版本: ```bash pip install tensorflow-gpu==1.6.0 ``` 这取决于项目需求和个人偏好[^1][^2]。 #### 创建虚拟环境 (可选) 如果希望保持系统的整洁并减少同项目的冲突风险,则建议创建一个新的 Python 虚拟环境再执行上述安装操作。这样做的好处是可以独立控制各个项目的依赖项而影响全局设置[^4]。 #### 验证安装成果 完成以上步骤后,可通过运行简单的 Python 程序测试 TensorFlow 是否能够识别到本地存在的 GPU 设备: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` 这段代码会打印出所有被检测到的物理 GPU 列表;如果有任何输出则说明 TensorFlow 已经成功连接上了 GPU 并准备就绪[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值