algorithm
文章平均质量分 82
hangguns
一个喜欢NLP的程序员
展开
-
对比学习损失篇,从L-softmax到AM-softmax到circle-loss到PCCL
对比学习损失篇,从L-softmax到AM-softmax到circle-loss到PCCL原创 2022-09-19 11:48:11 · 2507 阅读 · 0 评论 -
SimCSE构造正负样本对与损失
SimCSE构造正负样本对与损失原创 2022-09-13 18:16:20 · 1202 阅读 · 0 评论 -
Beam Search与Prefix Beam Search的理解与python实现
Beam Search与Prefix Beam Search的理解与python实现原创 2022-07-14 17:08:04 · 1733 阅读 · 2 评论 -
深入浅出CTC loss
深入浅出CTC loss原创 2022-07-06 18:13:24 · 2839 阅读 · 0 评论 -
深入浅出Viterbi算法与python实现
参考文章https://www.zhihu.com/question/20136144 我们以上图为例讲解从阶段1到阶段3的最短路径。首先如果按照贪婪算法,我们一共需要计算3×3×3=273\times3\times3=273×3×3=27次,而使用Viterbi动态规划算法,我们只需要计算3×3×2=183\times3\times2=183×3×2=18次 Viterbi的最主要核心点为计算并仅保留到达当前节点的最短路径,只要理解这个理论,维特比动态规划算法就一点都不难了。以A2A_2A2为例原创 2022-07-05 18:21:34 · 593 阅读 · 0 评论 -
MFCC语音特征提取总结
MFCC(Mel倒谱系数)符合人类听觉原理,能够有效的提取语音声学特征,适合作为语音特征输入。本文学习了以下2篇博客——博客1 博客2,并做了自己的总结MFCC的提取流程如下图所示:令输入语音信号signal=[s1,s2,...,sT]signal=[s_1,s_2,...,s_T]signal=[s1,s2,...,sT],其中T为信号采样频率。预加重可以去除口唇辐射的影响,增加语音的高频分辨率,其实现方式如下:signali=signali+1−αsignalisignal_i=signa原创 2022-07-05 11:05:27 · 621 阅读 · 0 评论