tf.nn.conv2d()

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

根据4维的input和filter张量计算2维卷积

input张量[batch, in_height, in_width, in_channels]

filter/kernel 张量[filter_height, filter_width, in_channels, out_channels]

操作按照下面执行:

1. 将4维的filter变成2维 [filter_height * filter_width * in_channels, output_channels]

2. 从图像receptive field中抽取形成一个虚拟tensor [batch, out_heigt, out_width, filter_height*filter_width*in_channels]

3. 

strides[0]=strides[3]=1. 对于大多数实例水平和垂直stride相同的情况, strides=[1, stride, stride, 1]

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

在input上执行max pooling

  • value: 4维张量 [batch, height, width, channels] type tf.float32
  • ksize: 窗口大小。
  • strides: 滑动窗口大小





















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值