关键技术分享:
- 文本预处理:包括文本清洗、分词、去除停用词等步骤,为后续的NLP任务提供干净、有效的数据。
- 词袋模型与TF-IDF:这两种方法用于将文本转换为数值向量,以便机器学习算法能够处理。
- N-gram模型:用于捕捉文本中的连续词汇序列,有助于理解文本的局部上下文。
- 词嵌入:如Word2Vec和GloVe,将单词表示为高维向量,捕捉词之间的语义和语法关系。
- 循环神经网络(RNN):适用于处理序列数据,如文本,能够捕捉序列中的长期依赖关系。
- 长短时记忆网络(LSTM):解决RNN的梯度消失和爆炸问题,更好地处理长序列数据。
- Transformer模型:通过自注意力机制捕捉文本中的全局依赖关系,是许多先进NLP模型的基础。
- 命名实体识别(NER):从文本中识别出人名、地名、组织机构名等实体。
- 关系抽取:从文本中抽取出实体之间的关系,构建知识图谱。
- 情感分析:分析文本中的情感倾向,如积极、消极或中立。
- 文本分类:将文本划分为不同的类别,如新闻分类、情感分类等。
- 机器翻译:将一种语言的文本自动翻译为另一种语言。