深度学习推荐系统笔记(3)

2.6 协同过滤的缺点

        UI矩阵对没有历史记录的评价为0所以UI矩阵很稀疏:计算物品相似度时用户评价较多的商品容易和其他物品的相似度高——仅仅因为这个物品打分的用户多。其他物品可能是相似的,但是因为打分的人少,物品向量非常稀疏,无法计算相似度

协同过滤的缺点:1.推荐结果的头部效应比较明显,处理稀疏向量的能力弱即泛化性能差

2.UI矩阵只有用户对物品的评价信息,没有用户特征,物品特征和场景特征,有效信息少。

3.矩阵分解

为每个用户和物品生成各自的隐向量,将用户和物品定位到同一个隐向量的表示空间上,用户和物品的距离越近说明爱好程度越高,越应该被推荐。用户和用户的距离越近说明用户相似度越高,物品和物品的距离越近说明物品相似度越高。

隐向量的生成:

矩阵分解:UI矩阵R(m*n)=用户矩阵U(m*k)*(k*k)*物品矩阵V(k*n)。(把一个稀疏的大矩阵分解成为相对稠密的两个矩阵)k:k越大,泛化能力越强,隐向量的信息越少,找平衡点

                 ​​​​​​​        

 用户U对物品I的评分计算:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​   

 3.1矩阵分解的方法:

1. 特征值分解——方阵

 2. SVD分解——过程看书,为什么这么做就得到的是用户矩阵和物体矩阵?SVD要求UI矩阵是稠密的,怎么填充?SVD计算复杂度太高

3. 梯度下降:找一个矩阵分解的函数,使得矩阵分解后得到的用户对物品的评分尽可能接近原始UI矩阵的元素值——最小化损失函数,加正则项。——计算梯度,反向更新。

得到最终的用户和物品的隐向量,一个用户对所有物品各自做内积得到的喜好程度排序,即为最终的推荐列表。问题:为什么计算I的梯度时不纳入所有的U?

                        

 总结:矩阵分解用用户和物品的隐向量去预测特定用户和特定物品的打分。梯度下降去拟合UI矩阵的全局信息。由此具有更好的泛化能力。

3.2消除用户和物品打分的偏差

        引入全局偏差常数,物品偏差系数,用户偏差系数,引入偏差系数做梯度下降。更能反映用户真实态度,得到更有用的推荐信息。

 ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        ​​​​​​​        ​​​​​​​        

 3.3 矩阵分解的优点和局限性

优点

1.泛化能力变强了。用隐向量去拟合UI矩阵的全局信息,1个大的稀疏矩阵——2个稠密的用户和物品矩阵

2.空间复杂度降低。不用存用户相似度和物品相似度矩阵,只要存隐向量就够了

3.embedding思想方便特征组合?

缺点还是没有用户特征,物品特征,场景特征信息

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值