周志华西瓜书《机器学习》习题提示——第11章

习题提示

11.1:
直接用【西瓜书11.2节】的Relief过滤式特征选择方法。

11.2:
参见11.2 过滤式选择(“近墨者黑”,近多少?)第二部分“Relief是处理二分类问题,将其推广到处理多分类问题,即为Relief-F”的讨论。

11.3:
参见11.2 过滤式选择(“近墨者黑”,近多少?)中最后一段的描述。

11.4:
对LVW算法加一个总时长控制: t t < T T tt<TT tt<TT(为与算法中的 t , T t,T t,T区别,这里用双写),即【西瓜书图11.1 】算法中:

增加输入 T T TT TT;第4至5句间插入初始化: t t = 0 tt=0 tt=0;第16至17句间插入: t t = t t + 1 ; i f ( t t = = T T ) r e t u r n ; tt=tt+1;if(tt==TT)return; tt=tt+1;if(tt==TT)return;

11.5:
考虑二维情况,岭回归【西瓜书(11.6)】中的第一项为二次曲线C:
f ( w 1 , w 2 ) = ( y − ( w 1 x 1 + w 2 x 2 ) ) 2 \begin{align} f(w_1,w_2)=(y-(w_1x_1+w_2x_2))^2 \tag{1} \end{align} f(w1,w2)=(y(w1x1+w2x2))2(1)
其黑塞矩阵为:
( ∂ 2 f ∂ w 1 2 ∂ 2 f ∂ w 1 ∂ w 2 ∂ 2 f ∂ w 2 ∂ w 1 ∂ 2 f ∂ w 2 2 ) = 2 ( x 1 2 x 1 x 2 x 1 x 2 x 2 2 ) \begin{align} \begin{pmatrix} \frac{{\partial}^2f }{{\partial}w_1^2}&\frac{{\partial}^2f }{{\partial}w_1{\partial}w_2}\\ \frac{{\partial}^2f }{{\partial}w_2{\partial}w_1}&\frac{{\partial}^2f }{{\partial}w_2^2} \end{pmatrix} =2 \begin{pmatrix} x_1^2&x_1x_2\\ x_1x_2&x_2^2 \end{pmatrix} \tag{2} \end{align} (w122fw2w12fw1w22fw222f)=2(x12x1x2x1x2x22)(2)
显然,它是半正定的,我们取正定,由凸函数的判定定理知,二次曲线C式(1)是凸的,即【西瓜书图11.2】所示合理,故C的等值线(簇)既会与 L 1 L_1 L1的等值线相交于一点,也会与 L 2 L_2 L2的等值线相交于一点,即交点不会在坐标轴上???,即得到的不是稀疏解。

11.6:
比较【西瓜书(11.6)】(岭回归)和【西瓜书(6.8)】(支持向量机的拉格朗日函数),有:
1、均有 ∣ ∣ w ∣ ∣ 2 ||\boldsymbol{w} ||^2 ∣∣w2项,即 L 2 L_2 L2的平方;
2、 均有和式项;
3、和式项中一个是二次项,一个是一次项;
4、岭回归为二次曲线与圆相切,支持向量机的情形则是直线与圆相切。

11.7:
∣ ∣ x ∣ ∣ 0 ||\boldsymbol{x} ||_0 ∣∣x0为向量 x \boldsymbol{x} x中非零元素的个数(没有解析表达式)。 采用它进行正则化,则:
min ⁡ x f ( x ) + λ ∣ ∣ x ∣ ∣ 0 \begin{align} \mathop{\min}\limits_{\boldsymbol{x}}f(\boldsymbol{x})+\lambda ||\boldsymbol{x} ||_0 \tag{3} \end{align} xminf(x)+λ∣∣x0(3)

它有两方面的自由度:
-其值 k k k
-非零元素的位置。

若采用近端梯度下降的思路,则转化为:
x k + 1 = arg ⁡ min ⁡ x   L 2 ∣ ∣ x − z ∣ ∣ 2 2 + λ ∣ ∣ x ∣ ∣ 0 \begin{align} \boldsymbol{x}_{k+1}=\mathop{\arg\min}\limits_{\boldsymbol{x}}\,\frac{L}{2}||\boldsymbol{x}-\boldsymbol{z}||_2^2+\lambda ||\boldsymbol{x} ||_0 \tag{4} \end{align} xk+1=xargmin2L∣∣xz22+λ∣∣x0(4)
其中, L , z L,\boldsymbol{z} L,z为已知, λ \lambda λ为参数,由于约束项 ∣ ∣ x ∣ ∣ 0 ||\boldsymbol{x} ||_0 ∣∣x0不能解析表达,故式(4)求解问题,将其转化为 ∣ ∣ x ∣ ∣ 1 ||\boldsymbol{x} ||_1 ∣∣x1,即得到【西瓜书(11.13)】。

11.8:
参见11.4 嵌入式选择与L1正则化(将特征选择嵌入到优化算法中,以LASSO算法为代表)中式(11.14)
​的推导过程。

11.9:
有如下几点:
1、二者都是以 L 1 L_1 L1替代 L 0 L_0 L0
2、二者在求解过程中均用到LASSO的PGD解法;
3、稀疏性使得【西瓜书(11.18)】中的 E i \mathbf{E}_i Ei易于进行奇异值分解;
4、压缩感知需要符合K-RIP条件【西瓜书(11.21)】。

11.10:
在第10章讨论LLE时,就是一种分组(依近邻 Q i Q_i Qi),现在固定字典集(编码矩阵): D = { d j } j = 1 D \mathcal{D} =\{\boldsymbol{d}_j\}_{j=1}^{D} D={dj}j=1D d j \boldsymbol{d}_j dj为列向量),对一组样本 { x i } , i ∈ G \{\boldsymbol{x}_i\},i\in \mathcal{G} {xi},iG,求符合要求的编码集 { α i } \{\boldsymbol{\alpha }^i\} {αi},从而使得 A = { α j } j = 1 ∣ D ∣ \mathcal{A} =\{\boldsymbol{\alpha}_j\}_{j=1}^{|D|} A={αj}j=1D
min ⁡ A Q ( A , G , D ) = 1 2 ∑ i ∈ G ∣ ∣ x i − D α i ∣ ∣ 2 2 + λ ∑ j = 1 ∣ D ∣ ∣ ∣ α j ∣ ∣ p = 1 2 ∑ i ∈ G ∣ ∣ x i − ∑ j = 1 ∣ D ∣ α j i d j ∣ ∣ 2 2 + λ ∑ j = 1 ∣ D ∣ ∣ ∣ α j ∣ ∣ p s . t 。 ∀ j : [ ( α j i > 0 , ∀ i ) o r ( α j i = 0 , ∀ i ) ] \begin{align} \mathop{\min}\limits_{\mathcal{A} }Q(\mathcal{A} ,\mathcal{G} ,\mathcal{D} ) &=\frac{1}{2}\sum_{i\in \mathcal{G} }||\boldsymbol{x}_i-D\boldsymbol{\alpha}^i||_2^2+\lambda\sum_{j=1}^{|D|}||\boldsymbol{\alpha}_j||_p\notag\\ &=\frac{1}{2}\sum_{i\in \mathcal{G} }\bigg|\bigg|\boldsymbol{x}_i-\sum_{j=1}^{|D|}{\alpha}_j^i\boldsymbol{d}_j\bigg|\bigg|_2^2+\lambda\sum_{j=1}^{|D|}||\boldsymbol{\alpha}_j||_p \tag{5}\\ &\qquad s.t。 \forall j:[({\alpha}_j^i>0,\forall i)or({\alpha}_j^i=0,\forall i)]\notag \end{align} AminQ(A,G,D)=21iG∣∣xiDαi22+λj=1D∣∣αjp=21iG xij=1Dαjidj 22+λj=1D∣∣αjps.tj:[(αji>0,i)or(αji=0,i)](5)
约束条件表示该组样本编码后,每一个特征具有捆绑关系,即要么全为0,要么全为正(负)。

采用变量交替(逐列更新)方法求解,即求 α r \boldsymbol{\alpha}_r αr时,将其余列视为常数。

为求 α r \boldsymbol{\alpha}_r αr,将其从 Q ( A , G , D ) Q(\mathcal{A} ,\mathcal{G} ,\mathcal{D} ) Q(A,G,D)中分离出来:
Q ( α r ) = 1 2 ∑ i ∈ G ∣ ∣ x i − ∑ j ≠ r ∣ D ∣ α j i d j − α r i d r ∣ ∣ 2 2 + λ ∣ ∣ α r ∣ ∣ p + λ ∑ j ≠ r ∣ D ∣ ∣ ∣ α j ∣ ∣ p = ∑ i ∈ G ( ∑ j ≠ r ∣ D ∣ α j i α r i d j T d r − α r i x i T d r + 1 2 α r i 2 ∣ ∣ d r ∣ ∣ 2 ) + λ ∣ ∣ α r ∣ ∣ p + (与 α r 无关的项) \begin{align} Q(\boldsymbol{\alpha}_r ) &=\frac{1}{2}\sum_{i\in \mathcal{G} }\bigg|\bigg|\boldsymbol{x}_i-\sum_{j\neq r}^{|D|}{\alpha}_j^i\boldsymbol{d}_j-{\alpha}_r^i\boldsymbol{d}_r\bigg|\bigg|_2^2+\lambda||\boldsymbol{\alpha}_r||_p+\lambda\sum_{j\neq r}^{|D|}||\boldsymbol{\alpha}_j||_p\notag\\ &=\sum_{i\in \mathcal{G} }\left(\sum_{j\neq r}^{|D|}{\alpha}_j^i{\alpha}_r^i\boldsymbol{d}^{\mathrm{T}}_j\boldsymbol{d}_r-{\alpha}_r^i\boldsymbol{x}^{\mathrm{T}}_i\boldsymbol{d}_r+\frac{1}{2}{{\alpha}_r^i}^2||\boldsymbol{d}_r||^2\right) +\lambda||\boldsymbol{\alpha}_r||_p\notag\\ &\quad +\text{(与$\boldsymbol{\alpha}_r$无关的项)} \tag{6} \end{align} Q(αr)=21iG xij=rDαjidjαridr 22+λ∣∣αrp+λj=rD∣∣αjp=iG j=rDαjiαridjTdrαrixiTdr+21αri2∣∣dr2 +λ∣∣αrp+(与αr无关的项)(6)
∂ Q ( α r ) ∂ α r i = − μ r i + α r i ∣ ∣ d r ∣ ∣ 2 + λ ∂ ∂ α r i ∣ ∣ α r ∣ ∣ p \begin{align} \frac{\partial Q(\boldsymbol{\alpha}_r )} {\partial {\alpha}_r^i} =-{\mu }_r^i+{\alpha}_r^i||\boldsymbol{d}_r||^2+\lambda\frac{\partial} {\partial {\alpha}_r^i}||\boldsymbol{\alpha}_r||_p \tag{7} \end{align} αriQ(αr)=μri+αri∣∣dr2+λαri∣∣αrp(7)
其中, μ r i = − ∑ j ≠ r ∣ D ∣ α j i d j T d r + x i T d r {\mu }_r^i=-\sum_{j\neq r}^{|D|}{\alpha}_j^i\boldsymbol{d}^{\mathrm{T}}_j\boldsymbol{d}_r+\boldsymbol{x}^{\mathrm{T}}_i\boldsymbol{d}_r μri=j=rDαjidjTdr+xiTdr

情形1:取 p = 1 p=1 p=1
∂ ∂ α r i ∣ ∣ α r ∣ ∣ p = ∂ ∂ α r i [ ∣ α r i ∣ + (与 α r i 无关的项) ] = 1   o r   0 (因 α r i ⩾ 0 ) \begin{align} \frac{\partial} {\partial {\alpha}_r^i}||\boldsymbol{\alpha}_r||_p &=\frac{\partial} {\partial {\alpha}_r^i}[| {\alpha}_r^i|+\text{(与${\alpha}_r^i$无关的项)}]\notag\\ &=1\ or\ 0\qquad \text{(因${\alpha}_r^i\geqslant 0$)} \tag{8} \end{align} αri∣∣αrp=αri[αri+(与αri无关的项)]=1 or 0(因αri0(8)

本应找 ∂ Q ( α r ) ∂ α r i = 0 \frac{\partial Q(\boldsymbol{\alpha}_r )} {\partial {\alpha}_r^i}=0 αriQ(αr)=0,但不一定能找到,求其次:让其尽量接近于0,即考虑何时达到目标 min ⁡ α r i ∣ ∂ Q ( α r ) ∂ α r i ∣ \mathop{\min}\limits_{{\alpha}_r^i}\bigg|\frac{\partial Q(\boldsymbol{\alpha}_r )} {\partial {\alpha}_r^i}\bigg| αrimin αriQ(αr)
∂ Q ( α r ) ∂ α r i = − μ r i + α r i ∣ ∣ d r ∣ ∣ 2 + λ [ 1   o r   0 ] = α r i ∣ ∣ d r ∣ ∣ 2 + [ ( λ   o r   0 ) − μ r i ] \begin{align} \frac{\partial Q(\boldsymbol{\alpha}_r )} {\partial {\alpha}_r^i} &=-{\mu }_r^i+{\alpha}_r^i||\boldsymbol{d}_r||^2+\lambda[1\ or\ 0]\notag\\ &={\alpha}_r^i||\boldsymbol{d}_r||^2+[(\lambda\ or\ 0)-{\mu }_r^i ] \tag{9} \end{align} αriQ(αr)=μri+αri∣∣dr2+λ[1 or 0]=αri∣∣dr2+[(λ or 0)μri](9)
(1)当 [ 0 − μ r i ] > 0 [0-{\mu }_r^i ]>0 [0μri]>0时,又 α r i ⩾ 0 {\alpha}_r^i\geqslant 0 αri0,即当 α r i = 0 {\alpha}_r^i=0 αri=0时达到目标;\
(2)当 [ λ − μ r i ] > 0 [\lambda-{\mu }_r^i ]>0 [λμri]>0时,即 μ r i < λ {\mu }_r^i<\lambda μri<λ,即当 α r i = 0 {\alpha}_r^i=0 αri=0时达到目标;\
(3)当 [ λ − μ r i ] ⩽ 0 [\lambda-{\mu }_r^i ]\leqslant 0 [λμri]0时,即 μ r i ⩾ λ {\mu }_r^i\geqslant \lambda μriλ,即当
α r i = μ r i − λ ∣ ∣ d r ∣ ∣ 2 {\alpha}_r^i=\frac{{\mu}_r^i-\lambda }{||\boldsymbol{d}_r||^2} αri=∣∣dr2μriλ时达到目标;

综合(1)(2)(3),其中,(1)包含了 μ r i = 0 {\mu}_r^i=0 μri=0,故(2)(3)中可限定 μ r i > 0 {\mu}_r^i>0 μri>0,记 ( μ r i ) + = max ⁡ { 0 , μ r i } ({\mu}_r^i)^+=\max\{0,{\mu}_r^i\} (μri)+=max{0,μri}
α r i = { 0 , ( w h e n ( μ r i ) + ⩽ λ ) ( μ r i ) + − λ ∣ ∣ d r ∣ ∣ 2 , ( o t h e r w i s e ) \begin{align} {\alpha}_r^i= \begin{cases} 0,\qquad (when ({\mu}_r^i)^+\leqslant \lambda)\\ \frac{({\mu}_r^i)^+-\lambda }{||\boldsymbol{d}_r||^2},\quad (otherwise)\\ \end{cases} \tag{10} \end{align} αri={0,(when(μri)+λ)∣∣dr2(μri)+λ,(otherwise)(10)

情形2:取 p = 2 p=2 p=2

虽然 α r i {\alpha}_r^i αri不易从 ∣ ∣ α r ∣ ∣ 2 ||\boldsymbol{\alpha}_r||_2 ∣∣αr2中分离,整体反而方便:
∂ ∣ ∣ α r ∣ ∣ 2 ∂ α r = α r ∣ ∣ α r ∣ ∣ \begin{align} \frac{\partial ||\boldsymbol{\alpha}_r||_2} {\partial \boldsymbol{\alpha}_r} =\frac{ \boldsymbol{\alpha}_r} { ||\boldsymbol{\alpha}_r||} \tag{11} \end{align} αr∣∣αr2=∣∣αr∣∣αr(11)
其中,省略了 L 2 L_2 L2的标识(下同)。
∂ Q ∂ α r = ∣ ∣ d r ∣ ∣ 2 α r − μ r + λ α r ∣ ∣ α r ∣ ∣ \begin{align} \frac{\partial Q} {\partial \boldsymbol{\alpha}_r} =||\boldsymbol{d}_r||^2\boldsymbol{\alpha}_r-\boldsymbol{\mu}_r+\lambda\frac{ \boldsymbol{\alpha}_r} { ||\boldsymbol{\alpha}_r||} \tag{12} \end{align} αrQ=∣∣dr2αrμr+λ∣∣αr∣∣αr(12)
∂ Q ∂ α r = 0 \frac{\partial Q} {\partial \boldsymbol{\alpha}_r} =0 αrQ=0,则:
α r = ( ∣ ∣ d r ∣ ∣ 2 + λ ∣ ∣ α r ∣ ∣ ) − 1 μ r = S r μ r \begin{align} \boldsymbol{\alpha}_r &=(||\boldsymbol{d}_r||^2+\frac{ \lambda} { ||\boldsymbol{\alpha}_r||})^{-1} \boldsymbol{\mu}_r\notag\\ &=S_r\boldsymbol{\mu}_r \tag{13} \end{align} αr=(∣∣dr2+∣∣αr∣∣λ)1μr=Srμr(13)
其中:
S r = ( ∣ ∣ d r ∣ ∣ 2 + λ ∣ ∣ α r ∣ ∣ ) − 1 = ( ∣ ∣ d r ∣ ∣ 2 + λ ∣ ∣ S r μ r ∣ ∣ ) − 1 \begin{align} S_r &=(||\boldsymbol{d}_r||^2+\frac{ \lambda} { ||\boldsymbol{\alpha}_r||})^{-1} \notag\\ &=(||\boldsymbol{d}_r||^2+\frac{ \lambda} { ||S_r\boldsymbol{\mu}_r||})^{-1} \tag{14} \end{align} Sr=(∣∣dr2+∣∣αr∣∣λ)1=(∣∣dr2+∣∣Srμr∣∣λ)1(14)
由式(13)(14)有:
α r = 1 ∣ ∣ d r ∣ ∣ 2 ( 1 − λ ∣ ∣ μ r ∣ ∣ ) μ r \begin{align} % S_r=\frac{1}{||\boldsymbol{d}_r||^2}\left(1-\frac{ \lambda} { ||\boldsymbol{\mu}_r||}\right)\\ \boldsymbol{\alpha}_r=\frac{1}{||\boldsymbol{d}_r||^2}\left(1-\frac{ \lambda} { ||\boldsymbol{\mu}_r||}\right)\boldsymbol{\mu}_r \tag{15} \end{align} αr=∣∣dr21(1∣∣μr∣∣λ)μr(15)
因分组的捆绑限定,由式(10)的讨论知,只需考虑:
μ r + = ( ( μ r 1 ) +   ( μ r 2 ) +   ⋯   ( μ r ∣ D ∣ ) + ) T ( μ r i ) + = max ⁡ { 0 , μ r i } \begin{align} \boldsymbol{\mu}_r^+=(({\mu}_r^1)^+\ ({\mu}_r^2)^+\ \cdots \ ({\mu}_r^{|D|})^+)^{\mathrm{T}} ({\mu}_r^i)^+=\max\{0,{\mu}_r^i\} \tag{16} \end{align} μr+=((μr1)+ (μr2)+  (μrD)+)T(μri)+=max{0,μri}(16)
显然,只有 ∣ ∣ μ r + ∣ ∣ > λ ||\boldsymbol{\mu}_r^+||>\lambda ∣∣μr+∣∣>λ才有 α r \boldsymbol{\alpha}_r αr全正。 综上有:
α r = { 1 ∣ ∣ d r ∣ ∣ 2 ( 1 − λ ∣ ∣ μ r ∣ ∣ ) μ r + , ( w h e n ∣ ∣ μ r + ∣ ∣ > λ ) 0 , ( o t h e r w i s e ) \begin{align} \boldsymbol{\alpha}_r= \begin{cases} \frac{1}{||\boldsymbol{d}_r||^2}\left(1-\frac{ \lambda} { ||\boldsymbol{\mu}_r||}\right)\boldsymbol{\mu}_r^+,\qquad &(when ||\boldsymbol{\mu}_r^+||>\lambda)\\ 0,\qquad &(otherwise) \end{cases} \tag{17} \end{align} αr={∣∣dr21(1∣∣μr∣∣λ)μr+,0,(when∣∣μr+∣∣>λ)(otherwise)(17)

上述讨论了一组样本 { x i } , i ∈ G \{\boldsymbol{x}_i\},i\in \mathcal{G} {xi},iG的表达向量 { α i } , i ∈ G \{\boldsymbol{\alpha}^i\},i\in \mathcal{G} {αi},iG具有这样的特点:它的分量要么全为0,要么全为正(或全为负),其转置 A T = ( α 1   α 2   ⋯   α d ) \mathbf{A}^{\mathrm{T}}=(\boldsymbol{\alpha}_1\ \boldsymbol{\alpha}_2\ \cdots\ \boldsymbol{\alpha}_d ) AT=(α1 α2  αd)按列具有该特点。

假定全体样本集分为 n n n组,第 m m m组下标为 G m ,   ( m = 1 , 2 , ⋯   , n ) \mathcal{G}_m,\ (m=1,2,\cdots,n) Gm, (m=1,2,,n),第 m m m组的样本为 { x i } i ∈ G m \{\boldsymbol{x}_i\}_{i\in \mathcal{G}_m} {xi}iGm,则对每组使用式(5)求得 α r i {\alpha}_r^i αri(情形1: p = 1 p=1 p=1的解:式(10))或 α r \boldsymbol{\alpha}_r αr(情形2: p = 2 p=2 p=2的解:式(17)),即得到第 m m m组的样本通过字典编码后的表达为 A m \mathbf{A}_m Am
{ A m } m = 1 n \{\mathbf{A}_m\}_{m=1}^n {Am}m=1n拼接成: A = ( A 1   A 2   ⋯   A n ) \mathbf{A}=(\mathbf{A}_1\ \mathbf{A}_2\ \cdots\ \mathbf{A}_n) A=(A1 A2  An)

现在切换到:已知上述分组 G m ,   ( m = 1 , 2 , ⋯   , n ) \mathcal{G}_m,\ (m=1,2,\cdots,n) Gm, (m=1,2,,n)及每组的编码 A m \mathbf{A}_m Am,求字典矩阵: D = ( d 1   d 2   ⋯   d ∣ D ∣ ) \mathbf{D}=(\boldsymbol{d}_1\ \boldsymbol{d}_2\ \cdots\ \boldsymbol{d}_{|D|} ) D=(d1 d2  dD)

该问题的最小目标表达式为:
Q ( D ) = ∑ m = 1 n Q ( A m , G m , D ) + γ ∑ k = 1 ∣ D ∣ ∣ ∣ d k ∣ ∣ p \begin{align} Q(\mathbf{D} )=\sum_{m=1}^nQ(\mathcal{A}_m ,\mathcal{G}_m ,\mathcal{D} )+\gamma \sum_{k=1}^{|D|}||\boldsymbol{d}_k||_p \tag{18} \end{align} Q(D)=m=1nQ(Am,Gm,D)+γk=1D∣∣dkp(18)
其中, Q ( A m , G m , D ) Q(\mathcal{A}_m ,\mathcal{G}_m ,\mathcal{D} ) Q(Am,Gm,D)为式(5)。

p = 0 p=0 p=0,讨论梯度: ∂ Q ( D ) ∂ d r = 0 \frac{\partial Q(\mathbf{D} )} {\partial \boldsymbol{d}_r}=0 drQ(D)=0,即可得解(从略)。

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:周志华西瓜书《机器学习》习题提示——第10章
下一篇:12.1 概念类与假设空间的关系(几乎、近似、覆盖)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值