FITC-DSPE,磷脂改性荧光素,二硬脂酰基磷脂酰乙醇胺荧光素,DSPE-FITC

FITC-DSPE是一种1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-FITC,纯度95%以上,需在-20°C下避光避湿保存。它常用于生物标记,其外观随PEG分子量不同而变化。文章还提及了磷脂酰胆碱的结构和相关荧光染料产品,如CY7-PEG系列。
摘要由CSDN通过智能技术生成

名称:FITC-DSPE

 绿色荧光素标记二硬脂酰基磷脂酰乙醇胺

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-FITC

纯度:95%+
存储条件:-20°C,避光,避湿
外观:固体或粘性液体,取决于分子量
PEG分子量可选:350、550、750、1k、2k、34k、5k

 

磷脂酰胆碱由一个胆碱的“头部”和甘油酸磷脂组成,甘油酸磷脂的尾部可以是各种各样的脂肪酸。通常,一条尾部是饱和的脂肪酸(可以是棕榈酸,也叫十六烷酸;或者十七烷酸,由Gobley在蛋黄中发现),另外一条是不饱和脂肪酸(例如油酸,由Gobley发现)。但是也有一些是两条都是饱和脂肪酸的。例如,动物肺部的磷脂酰胆碱,有较高部分比例的二棕榈酰磷脂酰胆碱。

相关产品:

CY7-聚乙二醇-巯基 ; CY7-PEG-SH近红外荧光染料SH-PEG-CY7

CY7-聚乙二醇-羟基 ; CY7-PEG-OH 花氰染料Cyanine

CY7-聚乙二醇-氨基 ; CY7-PEG-NH2 花氰染料Cyanine

Cy7-PEG-Maleimide; CY7-聚乙二醇-马来酰亚胺 ; CY7-PEG-MAL

CY7-聚乙二醇-活性酯; CY7-PEG-NHS

CY5-聚乙二醇-叶酸 ; CY5-PEG-FA Cy5-PEG-Folic Acid

CY5-聚乙二醇-生物素 ; CY5-PEG-Biotin

CY5-聚乙二醇-羧基 ;CY5-PEG-COOH 荧光染料

SH-PEG-CY5; CY5-聚乙二醇-巯基 ;CY5-PEG-SH

OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到值图像。最后,根据值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值