[LeetCode]53. Maximum Subarray 解题报告(C++)
题目描述
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
题目大意
- 给定一个数组,找到连续子串使得子串和最大.
- 要求O(n)
- 尝试分治算法!!!
解题思路
方法1:
- 要记录前面的和与当前值之和,比起当前值.谁大.
- 将大的赋给 cursum
- 然后就要将 res和cursum比较做更新.
代码实现:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN;
int cursum = 0;
for (auto x : nums) {
/*
在这里抉择是否重新开始
比较 前面的和加了x 和 x自身
*/
cursum = max(cursum+x,x);
// 更新
res = max(res, cursum);
}
return res;
}
};
方法2:
- 分治算法 O(NlogN)
- 将数组一分为二.分别找出左边和右边的最大子数组之和.
- 然后还要从中间向两边分别扫描.求出最大值分别和两边的最大值比较取最大.
代码实现:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.empty()) {
return 0;
}
return helper(nums, 0, (int)nums.size() - 1);
}
int helper(vector<int> &nums, int l, int r) {
if (l >= r) {
return nums[l];
}
int mid = l + (r - l) / 2;
int lmax = helper(nums, l, mid-1);
int rmax = helper(nums, mid + 1, r);
int mmax = nums[mid];
int tmp = mmax;
for (int i = mid - 1; i >= l; i--) {
tmp += nums[i];
mmax = max(mmax, tmp);
}
tmp = mmax;
for (int i = mid + 1; i <= r; i++) {
tmp += nums[i];
mmax = max(mmax, tmp);
}
return max(lmax, max(rmax, mmax));
}
};
方法3:
- leetcode动态规划思路
- 解释得非常好. 方法1是这种方法的空间优化!
代码实现:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
if (n < 1) return 0;
int *dp = new int[n];
dp[0] = nums[0];
int res = dp[0];
for (int i = 1; i < n; i++) {
dp[i] = (dp[i - 1] > 0 ? dp[i - 1] + nums[i]:nums[i]);
res = max(dp[i], res);
}
return res;
}
};
小结
- -