前言
在笔者刷题的过程中,二分查找始终是不可绕开的一种解决问题的方式,但是笔者对二分查找记录的相对不那么清楚,在使用时时常会发生错误,笔者觉得有必要梳理相关的文档进行整理
一、本篇内容
对二分查找涉及到的知识点和代码模板如下:
- 二分查找的两种写法
- 二分查找的左边界和右边界查找
二、二分查找的两种写法
在介绍两种写法前,我们必须了解,二分法的前提条件和思想
前提条件
- 数组有序
- 要寻找到的数只有一个
思想
- 首先选择数组中间的数字和需要查找的目标值比较
- 如果相等最好,就可以直接返回答案了
- 如果不相等,存在以下两种情况
1.如果中间的数字大于目标值,则中间数字向右的所有数字都大于目标值,全部排除
2.如果中间的数字小于目标值,则中间数字向左的所有数字都小于目标值,全部排除
写法
关于二分查找写法最重要的两个点
- while循环中 left 和 right 的关系,到底是 left <= right 还是 left < right
- 迭代过程中 middle 和 right 的关系,到底是 right = middle - 1 还是 right = middle
下面依次介绍二分查找的两种写法
1.第一种写法-左闭右闭
第一种写法:每次查找的区间在[left, right](左闭右闭区间),根据查找区间的定义(左闭右闭区间),就决定了后续的代码应该怎么写才能对。因为定义 target 在[left, right]区间,所以有如下两点:
- 循环条件要使用while(left <= right),因为当(left == right)这种情况发生的时候,得到的结果是有意义的
- if(nums[middle] > target) , right 要赋值为 middle - 1, 因为当前的 nums[middle] 一定不是 target ,需要把这个 middle 位置上面的数字丢弃,那么接下来需要查找范围就是[left, middle - 1]
具体代码如下:
int search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{
int left = 0;
int right = size - 1; // 定义了target在左闭右闭的区间内,[left, right]
while (left <= right) {
//当left == right时,区间[left, right]仍然有效
int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出
if (nums[middle] > target) {
right = middle - 1; //target在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1;

本文详细解析了二分查找的两种实现方式——左闭右闭和左闭右开,以及二分查找在寻找目标值左边界和右边界的情况。通过实例代码展示了如何在有序数组中高效地查找目标值及其边界。同时,文章提供了相关题目以加深理解。
最低0.47元/天 解锁文章
661

被折叠的 条评论
为什么被折叠?



