算法刷题:二分查找及对应左边界和右边界的寻找整理

本文详细解析了二分查找的两种实现方式——左闭右闭和左闭右开,以及二分查找在寻找目标值左边界和右边界的情况。通过实例代码展示了如何在有序数组中高效地查找目标值及其边界。同时,文章提供了相关题目以加深理解。


前言

在笔者刷题的过程中,二分查找始终是不可绕开的一种解决问题的方式,但是笔者对二分查找记录的相对不那么清楚,在使用时时常会发生错误,笔者觉得有必要梳理相关的文档进行整理

一、本篇内容

对二分查找涉及到的知识点和代码模板如下:

  • 二分查找的两种写法
  • 二分查找的左边界和右边界查找

二、二分查找的两种写法

在介绍两种写法前,我们必须了解,二分法的前提条件和思想
前提条件

  • 数组有序
  • 要寻找到的数只有一个

思想

  • 首先选择数组中间的数字和需要查找的目标值比较
  • 如果相等最好,就可以直接返回答案了
  • 如果不相等,存在以下两种情况

1.如果中间的数字大于目标值,则中间数字向右的所有数字都大于目标值,全部排除

2.如果中间的数字小于目标值,则中间数字向左的所有数字都小于目标值,全部排除

写法
关于二分查找写法最重要的两个点

  • while循环中 left 和 right 的关系,到底是 left <= right 还是 left < right
  • 迭代过程中 middle 和 right 的关系,到底是 right = middle - 1 还是 right = middle

下面依次介绍二分查找的两种写法

1.第一种写法-左闭右闭

第一种写法:每次查找的区间在[left, right](左闭右闭区间),根据查找区间的定义(左闭右闭区间),就决定了后续的代码应该怎么写才能对。因为定义 target 在[left, right]区间,所以有如下两点:

  • 循环条件要使用while(left <= right),因为当(left == right)这种情况发生的时候,得到的结果是有意义的
  • if(nums[middle] > target) , right 要赋值为 middle - 1, 因为当前的 nums[middle] 一定不是 target ,需要把这个 middle 位置上面的数字丢弃,那么接下来需要查找范围就是[left, middle - 1]

具体代码如下:

int search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{
   
   
    int left = 0;
    int right = size - 1;	// 定义了target在左闭右闭的区间内,[left, right]
    while (left <= right) {
   
   	//当left == right时,区间[left, right]仍然有效
        int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出
        if (nums[middle] > target) {
   
   
            right = middle - 1;	//target在左区间,所以[left, middle - 1]
        } else if (nums[middle] < target) {
   
   
            left = middle + 1;	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值