FAQ检索式问答系统 or 智能客服的问答对如何构建

一、FAQ问答系统(智能客服)中的知识库是什么

FAQ 指的是常见问答,也就是针对于某个业务,用户经常问的问题、重点关切的问题。对于一些销售型、服务型的公司,经常会在公司官网首页,或者APP中配置在线客服系统,为了节省客服人力开支,开发一个具备自动问答功能的客服机器人是有必要的。我们可以将一些固定的、简单的、常见的历史问题进行归纳总结制作“标准问题”,然后组织相关人员撰写答案,如此就生成了 FAQ 知识库了。

二、问答对从哪里来

1、专业人员撰写

比如某公司生成了某产品,那么会有产品手册,这样就可以从手册中总结一些问题。比如“XX产品都有什么型号?”,“XX型号空调是多少匹?“,”2.0匹动力的空调可以制冷多少平米房间?”等等。

2、从客服系统积累的历史数据中挖掘

有的时候我们并不知道用户经常会关注什么,会问什么问题,因此从用户的历史数据中进行挖掘是补充问答对的常用有效手段。

糖尿病可以每天早上吃鸡蛋吗糖尿病可以每天早上吃鸡蛋吗

我是二型糖尿病,能吃鸡蛋吗?水果能吃吗?

糖尿病能喝冲鸡蛋吗

乳腺癌中期怎么办

乳腺癌中期最好采用什么治疗方法

女性乳腺癌中期如何治疗

乳腺癌中期选择什么治疗方式好?

乳腺癌中期比较好的治疗方法

中期乳腺癌的最佳治疗办法是哪些

乳腺癌中期怎么治

假如上述10个问句是用户询问过的历史问题,那么我们在构建知识库的时候就可以将其添加进去了。但是需要将其都加入问答对吗?显然是不需要的,我们需要添加的是常问的问题,不是什么问题都添加,那么如何判定某个问题是否是常问的呢?可以看到里面有很多重复的问题,但是问法却大不相同,如何进行统计呢?另外这么多个相同的问题,选择哪个作为标准问题呢?

我们从历史数据中挖掘问答对的目的是可以从上述10个问题中挖掘出

  • “糖尿病能吃鸡蛋吗?”

  • “乳腺癌中期的治疗方法是什么?”

形如这样的标准问题补充到我们的 FAQ 问答知识库中。

三、如何构建问答知识库

本节主要讲一讲如何做历史数据挖掘,就是如何统计哪些问题是常问的。很显然可以使用文本聚类算法来对所有历史问题进行聚类,然后对每个聚类的簇进行计数;我们可以设定一个数量,如果某个簇所包含的样本数量超过这个数量,就将其定义为常问问题;然后从这个簇里面选择一个具有代表性的句子作为该类问题的标准问,当然也可以使用模型生成、或人为编写一个标准问。

聚类算法是无监督算法,下文分别介绍 k-means 和 DBSCAN 算法。

1、kmeans 聚类算法

最小化 E 无法找到最优解,这是一个NP 难问题,因此Kmeans 算法采用了贪心策略,通过迭代优化来近似求解,其 python 实现伪代码算法如下所示:

从上述介绍,其实可以看到 k 均值聚类算法存在以下这些缺点:

  1. 非常依赖人工经验来设置簇的数量 k,在做新问题挖掘时,我们大多数情况是不知道有多少个新问题的

  2. 算法对最开始的 k 个初始化均值向量的选取非常敏感,由于初始均值向量选取得随机性,导致每次训练聚类算法所得到的的结果可能都不一致;使用 k-means++ 初始化方案能一定程度的缓解

  3. 该算法假设簇是凸的,且各向同性的,但情况并非总是如此;因此它对细长簇或形状不规则的流形簇聚类效果较差(如下图所示)

  4. 由最小化平方误差公式知道,我们希望误差越小越好,甚至趋向于0;但是在高维向量空间,欧氏距离计算的结果总是比较大(维度灾难),这时,聚类前先将样本向量做PCA 降维是一个好选择

  5. K 均值聚类无法获取全局最优聚类结果,只能得到局部最优解

  6. 对噪声非常敏感

说了这么多缺点,kmeans 当然也有优点:

  1. 原理简单,容易实现

  2. 可解释性强

2、DBSCAN 聚类算法

密度聚类,也就是“基于密度的聚类”,此算法假设聚类结构能通过样本分布的紧密程度确定。它从样本密度的角度来考察样本之间的连续性,并基于可连接样本不断扩展聚类簇以获得最终的聚类效果。

DBSCAN 是一个著名的密度聚类算法,它是基于一组邻域(neighborhood)参数(\epsilon,MinPts)来刻画样本分布的紧密程度。我们给定数据集 D={x1,x2,…,xm},定义下下概念:

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用增强检索技术和智能问答系统进行文本分类 #### 方法概述 增强检索技术与智能问答系统的结合能够显著提升文本分类的效果。通过构建专门针对特定领域或主题的知识图谱,可以更精准地理解和解析待分类文本的内容特征[^1]。 对于文本分类任务而言,可以通过如下方式集成这两种技术: - **预处理阶段**:对待分类文本执行初步分析,识别其中的关键实体、概念以及上下文环境。 - **知识检索模块**:依据上述提取的信息,在预先建立好的知识库或者外部资源中查找最相关的条目;此过程不仅限于简单的关键词匹配,而是借助自然语言处理手段深入挖掘潜在关联[^2]。 - **融合决策机制**:将来自不同渠道获取的数据综合起来考虑,形成最终判断依据。例如,当面对一篇科技新闻文章时,如果其提及了某些前沿研究成果,则可通过查询学术论文数据库确认这些成果所属的具体学科分支,从而辅助完成类别划分工作。 #### 实施方案举例 以电商网站的商品评论为例说明具体应用流程: 假设目标是对大量顾客反馈留言实施情感倾向标注——正面评价还是负面意见。此时可采用基于深度学习架构的问答模型配合商品属性标签体系共同作业: 1. 对每条评论抽取核心观点表达; 2. 利用RAG等先进算法从产品手册、官方FAQ页面乃至过往相似案例记录里搜集背景资料作为补充解释材料; 3. 将两者组合送入大型预训练语言模型内部求解最优答案选项,即确定该条评论所传达的态度取向是积极肯定还是否定批评性质[^3]。 ```python def classify_review(review_text, product_info): # Step 1: Extract key points from review text using NLP techniques. # Step 2: Retrieve relevant documents or knowledge snippets related to the extracted keywords and context of `product_info`. # Step 3: Combine retrieved information with original review into a prompt template suitable for large language models. prompt = f"Given this customer feedback '{review_text}' about {product_info}, is it positive or negative?" # Step 4: Send combined input to LLM API endpoint and get response indicating sentiment classification result. llm_response = call_large_language_model_api(prompt) return parse_llm_output(llm_response) # Example usage: sample_review = "The battery life on my new phone isn't lasting as long as advertised." product_details = {"category": "Electronics", "type": "Smartphone"} sentiment_result = classify_review(sample_review, product_details) print(sentiment_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值